Impact of Asymmetric Encryption in Cloud Computing: A Study

M. Ilakiya^{1*}, R.Vijithra², K. Kuppusamy³, J.Mahalakshmi⁴

^{1,2,4}Department of Computer Science, Alagappa University, Karaikudi, Tamilnadu, India ³Department of Computational Logistics, Alagappa University, Karaikudi, Tamilnadu, India

*Corresponding Author: ilakiyamuruges@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i3.894897 | Available online at: www.ijcseonline.org

Accepted: 21/Mar/2019, Published: 31/Mar/2019

Abstract—"Cloud Computing" a form of On-demand computing used by business peoples, organizations and institutions on pay –as-you basis. The Cloud Computing paradigm have many advantages such as availability, scalability, automated updates on software, enhanced collaboration and easily manageable, that makes it as an efficient medium for use. Security threat to its data stored in shared medium is a major concern. To ensure the authentication of the data many mechanisms were in use. Over past decades Cryptography is one most widely used technique for concealing data from third party. Symmetric key cryptography uses the similar key for both the encryption and decryption of messages. Instead, Asymmetric key cryptography uses two different types of keys. This paper discussed about the brief overview of algorithms and mechanisms done by the researchers regarding authentication and authorization issues in the asymmetric key scenario.

Keywords—Cloud Computing, Authentication, Cryptography, Security

I. INTRODUCTION

Cloud computing is a paradigm for delivery of computing services over the internet, on-demand, as pay as you service. It gives sharing of computing resources without having own servers and storage application. Based on end user requirements, cloud services are categorized into three: Saas, Paas, and Iaas. Software as a Service provides cloud service environment that is accessed through the internet. But the user must have proper license from the cloud service provider. Platform as a Service is one of the cloud services which provides platform for user developing our own application. Infrastructure as a Service is major cloud service environment that provides virtual computing resources like servers, storage devices, operating systems, network on the internet through cloud service providers. Virtual machine reservation services are provided by Cloud computing providers with specified computing units. The main goal of Iaas is reduced the physical maintenance. In cloud computing, data security is arguably the most vital concern and the foremost issue to taken into account. The cloud will presumably hold most sensitive information; hence cloud provider must offer high profiled security. To enhance the security of data deposited to cloud, authentication mechanisms were deployed. One such from cryptography is the technique of writing or storing information in a way that it's revealed only to those to who are intended to receive. In a cloud environment, cryptography is used to prevent data resided in cloud service provider hosts from the malicious

attack by using probable encryption technique. It protects sensitive data without delaying information exchange and deliver robust access controls. In cryptography, data security may be ensured by one of two categories of encryption algorithm, namely secret key cryptography and public key cryptography. Only one key used for both encryption and decryption in secret key cryptography, also called symmetric encryption. Two different keys are used for encryption and decryption in public key cryptography, also called asymmetric encryption.

This paper discusses impact of asymmetric encryption mechanisms done by the researchers for data security in cloud. Section 1 shows the overview of cloud computing cryptography techniques and data security in cloud. Section 2, in detail tabularizes the actual research work done on the asymmetric encryption in cloud computing with merits and demerits. Section 3, explains conclusion to the paper done.

II.	A SURVEY ON IMPACTS OF ASYMMETRIC ENCRYPTION METHODOLOGY IN CLOUD
	COMPUTING

S.No	Year	Author	Paper Title	Pros	Cons
1.	2001	Scott Craver Stefan Katzen	Copyright protection	Embedding process should	Considerably increases the
	2001	Beizzer et.al.,	protocols based on	be robust.	complexity of watermark
			asymmetric watermarking.		verification protocol.
2.	2001	Emmanouil Magkos	An Asymmetric Traceability	Easy identification of Traitor.	More time consuming process.
		Panayiotis Kotzanikolaou	scheme for copyright		CT
		et.al.,	protection without Trust		
			Assumption.		
3.	2003	Sung-Cheal Byun and	Symmetric and Asymmetric	Transmitted data include the	Even if a bit has been changed or
		Byung-Ha Aahn et.al.,	Cryptography based	encrypted digital data and the	wrong key is used, the received
			Watermarking Scheme for	signature is contained in the	data are regarded as violation of
			Secure Electronic Commerce	same file.	features.
			via the internet.		
4.	2007	Z.Zeghid,	A modified AES based	Much faster than its	Hardware resources required to
		M.Machhout,	algorithm for image	counterpart.	achieve this throughput.
		L.Khriji,	encryption.		
		A.Baganne,			
5	2010	R.Tourki et.al.,		Mana and Cl. 1	DNA Counterant 1 (11)
5.	2010	LAI Xvejia Lu Mingxin	Asymmetric Encryption and Signature method with DNA	More powerful and unbreakable cryptographic	DNA Cryptography still cannot compete with the electronic
		Qin Lei	technology.	unbreakable cryptographic algorithm Now-a-days.	compete with the electronic computing technology and the
		Han Junsong	technology.	argorithin Now-a-days.	Mathematical cryptography.
		Fang Wimen et.al.,			Wattematical cryptography.
6.	2010	Lei Zhang,Qianhong wu,Bo	Identity based authenticated	Secure against semantically	Key secrecy is very low in this
		Qin,Josep Domingo-Fercer	asymmetric group key	indistinguishable chosen	protocol.
		et.al.,	agreement protocol.	identity and plaintext attacks.	*
				•	
7.	2011	Tumpa Roy Kamlesh Dutta	Mutual Authentication for	Capability of identifying	Computational cost is very high.
		et.al.,	mobile communication using	authority, reduce the	
			symmetric and asymmetric	computational power.	
			key cryptography.		
8.	2013	Niraj kumar pankaj kupta	Boolean Algebra based	Secured data transfer in form	Difficult to decrypt.
		Monika sahu Dr.Marizvi et.al.,	effective and efficient	of small and large files.	
		et.al.,	Asymmetric key		
0	2014		cryptography.		
9.	2014	Samiksha Shukla Dr.G.Sadashivappa et.al.,	Secure multi-party	Ensures confidentiality,	In case of one party and one
		DI.G.Sadasiiivappa et.ai.,	computation protocol using	security and privacy.	anonymizer the probability of joint
10	2015	Vahid Forutan Robert Fischer	Asymmetric encryption. Security enhanced network		malicious conduct is considerable.
10.	2015	et.al.,	•	Protect data transfer in network.	Absence of standard security.
		ct.al.,	coding through public key cryptography	network.	
11.	2016	Pu Yue,Li Guodong Zhao	Based on the improved RSA	Ensure that the encrypted	Large computation, the calculation
11.	2010	Jing et.al.,	keys and compound chaotic	randomness of the audio file.	speed is slow.
		,	system and design of audio	fundomness of the audio me.	speed is slow.
			encryption algorithm.		
12.	2016	Hsin-Te Wu	Vehicular cloud network and	Non-Repudiation,	Larger amount of packet length in
		Gwo-Jiun Horng et.al.,	information security	Authentication and	chameleon hashing method creates
			mechanisms.	Conditional Anonymity.	a lot of loadings.
13.	2017	Shilpa V Mahagonkar Nilma	TEAC: Timed Efficient	Provide security against	Message to message overhead.
		Dongre et.al.,	Asymmetric cryptography	malicious attacks.	
			for enhancing security in		
			VANET.		
14.	2017	Naveen Kumar Manisa J	Chip based asymmetric key	Fulfill the security	Need some additional economical
		Nene et.al.,	generation in hierarchical	requirements of wireless	cost for the hardware.
			wireless sensor networks	sensor networks like	
				confidentiality, integrity,	

International Journal of Computer Sciences and Engineering

Vol.7(3), Mar 2019, E-ISSN: 2347-2693

				authenticity and data freshness.	
15.	2017	Sauvik Bal Mrind Kanti Sarkar et.al.,	ACAFP: Asymmetric key based cryptography algorithm using four prime numbers to secure message communication.	Take less memory and less power also.	Computes only small size prime numbers. Difficult to choose large prime numbers then the factorization of the numbers.
16.	2017	Lakshika Singh, Anuj Kumar et.al.,	Secured Information Retrieval from cloud involving OTP and human voice.	Data will be protected by using multi authentications.	High storage is required for this kind of authentication. This kind of authentication can also be extraneously influenced by once sore throat and cold.
17.	2017	Archit Agarwal Satya Jeet Singh et.al.,	Mask ID's based Asymmetric Session key exchange.	Provide confidentiality and authentication. This mechanism helps in preventing any fowl by a system authorized user.	In key pre-distribution, amount of work done in delivering these many keys and if keys are not placed in time then communication will stop.
18.	2018	Bhaskar Marapelli et.al.,	Enhancement of cloud data security by multi cloud data encryption and decryption.	Data uploaded will be more secured.	Security and Governance is more complicated. Creates resiliency issues.
19.	2018	Harshad R.Pawar Dr.Dinesh G.Harkut et.al.,	Classical and Quantum cryptography for image encryption and decryption.	More secure in the case of exchanging multimedia data.	Increase the communication rang and bit transfer rate.
20.	2018	D.N.Wu, Q.Q.Gan X.M.Wang et.al.,	Verifiable public key encryption with keyword search based on homomorphic encryption in multiuser setting.	Less complexity of computation.	Perform better only fewer search keywords.

III. CONCLUSION

Cloud Security using Asymmetric Key Encryption techniques are briefly discussed in this research work. Cloud data needs a high security since it is replicated and shared over the network. This paper gives brief study on various security mechanisms and their pros and cons while used for the protection of data in cloud computing is done for further research.

REFERENCE

- [1]. Scott Craver Stefan Katzen Beizzer et.al.," *Copyright protection protocols based on asymmetric watermarking*", IFIP International Federation for Information Processing **2001**.
- [2]. Emmanouil Magkos Panayiotis Kotzanikolaou et.al.," An Asymmetric Traceability scheme for copyright protection without Trust Assumption", K. Bauknecht, S.K. Madria, and G. Pernul (Eds.): EC-Web 2001, LNCS 2115, pp. 186–195, 2001. Springer-Verlag Berlin Heidelberg 2001.
- [3]. Sung-Cheal Byun and Byung-Ha Aahn et.al.," Symmetric and Asymmetric Cryptography based Watermarking Scheme for Secure Electronic Commerce via the internet", W. Chung et al. (Eds.): HSI 2003, LNCS 2713, pp. 607-612, 2003. Springer-Verlag Berlin Heidelberg 2003.
- [4]. Z.Zeghid,M.Machhout,L.Khriji,A.Baganne,R.Tourki et.al," A modified AES based algorithm for image encryption", World Academy of Science, Engineering and Technology 27 2007.

- [5]. LAI Xvejia, Lu Mingxin,Qin Lei,Han Junsong,Fang Wimen et,al,." Asymmetric Encryption and Signature method with DNA technology", Science China Press and Springer-Verlag Berlin Heidelberg 2010.
- [6]. Lei Zhang,Qianhong wu,Bo Qin,Josep Domingo-Fercer et.al.," Identity based authenticated asymmetric group key agreement protocol", M.T. Thai and S. Sahni (Eds.): COCOON 2010, LNCS 6196, pp. 510–519, 2010. Springer-Verlag Berlin Heidelberg 2010.
- [7]. Tumpa Roy Kamlesh Dutta et.al.," *Mutual Authentication for mobile communication using symmetric and asymmetric key cryptography*", D.C. Wyld et al. (Eds.): NeCoM/WeST/WiMoN 2011, CCIS 197, pp. 88–99, 2011. Springer-Verlag Berlin Heidelberg 2011.
- [8]. Niraj kumar pankaj kupta Monika sahu Dr.Marizvi et.al.," Boolean Algebra based effective and efficient Asymmetric key cryptography", 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s) 978-1-4673-5090-7/13/\$31.00 ,2013 IEEE.
- [9]. Samiksha Shukla Dr.G.Sadashivappa et.al.," Secure multi-party computation protocol using Asymmetric encryption", 978-93-80544-12-0/14/\$31.00,2014 IEEE, 2014 International Conference on Computing for Sustainable Global Development (INDIACom).
- [10]. Vahid Forutan Robert Fischer et.al.," Security enhanced network coding through public key cryptography", 2015 IEEE Conference on Communications and Network Security (CNS), 978-1-4673-7876-5/15/\$31.00, 2015 IEEE.
- [11]. Pu Yue, Li Guodong Zhao Jing et.al.," Based on the improved RSA keys and compound chaotic system and design of audio encryption algorithm", 2016 International Conference on Smart City and

International Journal of Computer Sciences and Engineering

Vol.7(3), Mar 2019, E-ISSN: 2347-2693

Systems Engineering (ICSCSE) 978-1-5090-5530-2/16 \$31.00 ,2016 IEEE.

- [12]. Hsin-Te Wu,Gwo-jiun Homg et.al.," Vehicular cloud network and information security mechanisms", 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE) IEEE-ICAMSE 2016 - Meen, Prior & Lam (Eds).
- [13]. Shilpa V Mahagonkar Nilma Dongre et.al.," TEAC: Timed Efficient Asymmetric cryptography for enhancing security in VANET", 2017 International Conference on Nascent Technologies in Engineering (ICNTE) 2017 IEEE.
- [14]. Naveen Kumar Manisa J Nene et.al.," Chip based asymmetric key generation in hierarchical wireless sensor networks", 2017 2nd International Conference for Convergence in Technology (I2CT) 2017 IEEE.
- [15]. Sauvik Bal Mrind Kanti Sarkar et.al.," ACAFP: Asymmetric key based cryptography algorithm using four prime numbers to secure message communication", 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON) 2017 IEEE.
- [16]. Lakshika Singh, Anuj Kumar et.al.," Secured Information Retrieval from cloud involving OTP and human voice", 2017 IJSRST Vol.3, Issue.7, Print ISSN: 2395-6011, Online ISSN: 2395-602X, International Journal of Scientific Research in Science and Technology (www.ijsrst.com).
- [17]. Archit Agarwal Satya Jeet Singh et.al.," Mask ID's based Asymmetric Session key exchange", 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC) 2017 IEEE.
- [18]. Bhaskar Marapelli et.al.," Enhancement of cloud data security by multi cloud data encryption and decryption", 2018 IJSRST VoL. 4 ,Issue.5, Print ISSN: 2395-6011 | Online ISSN: 2395-602X, International Journal of Scientific Research in Science and Technology (www.ijsrst.com).
- [19]. Harshad R.Pawar Dr.Dinesh,G.Harkut et.al.," *Classical and Quantum cryptography for image encryption and decryption*", 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE), 2018 IEEE.
- [20]. D.N.Wu,Q.Q.Gan X.M.Wang et.al.," Verifiable public key encryption with keyword search based on homomorphic encryption in multiuser setting", D. N. Wu et al.: Verifiable PEKS Based on Homomorphic Encryption in Multi-User Setting, VoL 6, 2018,IEEE Access.
- [21]. C. Kaleeswari, P. Maheswari, Dr. K. Kuppusamy, Dr. Mahalakshmi Jeyabalu ,"A Brief Review on Cloud Security Scenarios "2018 IJSRST, VoL.4, Issue.5.
- [22]. Sebagenzi Jason, Suchithra. R, "Scheduling Reservations of Virtual Machines in Cloud Data Center for Energy Optimization", in International Journal of scientific research in Computer Science and Engineering, Vol 6, Issue 2, pp:16-26, December 2018.

Authors Profile

Ms.M.Ilakiya is a Research scholar in the Department of Computer Science, Alagappa University, Karaikudi, Tamilnadu, India. She has received her M.Sc in Computer Science from Alagappa University, Karaikudi, Tamilnadu in the year of 2018. Her areas of research interest includes Network security, Cloud Computing.

Ms.R.Vijithra is a Research scholar in the Department of Computer Science, Alagappa University, Karaikudi, Tamilnadu, India. She has received her M.Sc in Computer Science from Alagappa University, Karaikudi, Tamilnadu in the year of 2018. Her areas of research interests include Network security, Cloud Computing.

Prof. Dr K.KUPPUSAMY is working as an Professor and Head in the Department of Computational Logistics, Alagappa University, Karaikukdi, Tamilnadu He has received his Ph.D in Computer Science from Alagappa University, Karaikudi, Tamilnadu in the year 2007. He has 27 years of teaching

experience at PG level in the field of Computer Science. He has published many papers in International Journals and presented in the National and International conferences. His areas of research interests include Information/Network Security, Algorithms, Neural Networks, Fault Tolerant Computing, Software Engineering, Software Testing and Optimization

Dr J.Mahalakshmi is working as an Taeaching Assistant in the Department of Computer Science, Alagappa University, Karaikukdi, Tamilnadu She has received his Ph.D in Computer Science from Alagappa University, Karaikudi, Tamilnadu in the year 2017. She has 2 years of

teaching experience at PG level in the field of Computer Science. She has published many papers in Reputed International Journals and presented in the National and International conferences. Her areas of research interests include Algorithms, Neural Networks, Optimization Techniques, Deep Learning, Cloud Computing.