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Abstract— In this paper we have successfully implemented Matrix Multiplication using Strassen's Algorithm on a NVIDIA 

GPU using CUDA. We have used the multiple cores of the GPU to reduce the computation time drastically. We have also 

compared the time taken by matrix multiplication using Strassen's algorithm on both CPU and GPU. We have found that the 

GPU implementation was much faster, but only when the recursion was performed till a certain limit. Beyond that limit, the 

computation took much more time than expected. Also, we found that implementing Matrix Multiplication using Strassen's 

algorithm on the CPU yielded some very positive results. By conducting experiments, we came to the conclusion that the 

recursion limit can be comparatively smaller for matrix multiplication using Strassen's algorithm on CPU than for matrix 

multiplication using Strassen's algorithm on GPU. 
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I.  INTRODUCTION 

 

Matrix multiplication is one of the most basic and crucial 

linear algebra operations. Matrix multiplication is used for a 

variety of scientific calculations in a variety of fields, and 

any decrease in the computation time will be extremely 

beneficial. The complexity of matrix multiplication using the 

classic method(using 3 for loops) is O(n
3
). But there are 

other algorithms which have a lower complexity than O(n
3
). 

The current O(n
k
) algorithm with the lowest known exponent 

k is a generalization of the Coppersmith–Winograd 

algorithm that has an asymptotic complexity of O(n
2.3728639

), 

by François Le Gall[1]. However, the constant coefficient 

hidden by the Big O notation is so large that it is not feasible 

to implement these algorithms [2]. Thus Strassen's algorithm 

is the most feasible algorithm to implement on modern day 

computers, as it has a complexity of O(n
2.807

).  Strassen's 

algorithm achieves a lower complexity by using 7 

multiplications, instead of 8, as is used in the traditional 3 

loop matrix multiplication. We have discussed further about 

Strassen’s algorithm later on in the paper. 

 

In Section  2 we have discussed about some of the work 

which has been done in this field. Section 3 has some 

general information about Strassen’s Algorithm. A general 

overview of GPU and CUDA has been given in section 4. 

Section 5 contains an explanation of the CUDA kernel. The 

desgin and implementation of Strassen’s Algorithm has been 

described in section 6. In section 7, the experimental setup 

has been described. The experimental results have been 

documented in section 8. Ultimately we have concluded in 

section 9. 

 

II. RELATED WORK 

 

There has been some, although not much work related to 

implementing Strassen’s algorithm on the GPU. Li, Ranka 

and Sahni [3] have implemented Strassen’s algorithm on 

GPU, but they have not talked about the recursion limit. 

Arafat, Elango and Sadayappan[4] have implemented 

Strassen-Winograd’s algorithm for matrix multiplication on 

the GPU. They’ve also discussed about a cutoff point, where 

the algorithm switches from Strassen’s algorithm to the 

classic method. Yugopuspito, Sutrisno, and Hudi[5] have 

talked about managing the memory required for 

implementing Strassen’s algorithm. Since it is a recursive 

algorithm, multiple matrices are declared at each step, and 

hence the memory required is quite large. Khan, Al-

Mouhamed and Fatayer[6] have further developed a method 

to optimize Strassen’s algorithm on GPU. 

 

III. STRASSEN’S ALGORITHM 
 
Volker Strassen [7] first published this algorithm in 1969 
and proved that the three loop method to multiply two 
matrices was not optimal.  
Let A, B be two matrices. We want to calculate the matrix 
product C, where C = AB 
We partition A, B and C into equally sized block matrices, 

    Fig 1. Partitioning of matrices 
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C1,1 = A1,1B1,1 + A1,2B2,1 
C1,2 = A1,1B1,2 + A1,2B2,2 
C2,1 = A2,1B1,1 + A2,2B2,1 
C2,2 = A2,1B1,2 + A2,2B2,2 

 
With this construction we have not reduced the number of 
multiplications. We still need 8 multiplications to obtain the 
result matrix C. To reduce the number of multiplications, we 
define new matrices as follows 

M1 = (A1,1 + A2,2)(B1,1 + B2,2) 
M2 = (A2,1 + A2,2)B1,1 
M3 = A1,1(B1,2 – B2,2) 
M4 = A2,2(B2,1 – B1,1) 
M5 = (A1,1 + A1,2)B2,2 
M6 = (A2,1 – A1,1)(B1,1 + B1,2) 
M7 = (A1,2 – A2,2)(B2,1 + B2,2) 

 
We can see for the 7 matrices Mi, where 1<=i<=7, 7 
multiplications are performed, thus reducing the number of 
multiplications by 1. We obtain the result matrix C by 
performing the computations listed below 

C1,1 = M1 + M4 – M5 + M7 
C1,2 = M3 + M5 
C2,1 = M2 + M4 
C2,2 = M1 – M2 + M3 + M6 

 
[9] 

 
We recursively keep on dividing the matrices into smaller 
matrices until we get matrices of size 2x2. The time 
complexity can be written as T(n) = 7*T(n/2) + O(n

2
). From 

Master’s Theorem we can calculate the complexity to be 
O(n

log 7
) which is approximately O(n

2.8074
) [8]. 

 

Originally
 
the algorithm was meant to be performed on two 

matrices of dimension 2
n
x2

n
, as the matrices have to be 

divided into 4 equal parts recursively. The division stops 

once we reach a matrix of size 2x2. But practically the time 

taken to perform Strassen’s algorithm on matrices below a 

certain size is more than the time taken to do normal matrix 

multiplication on those matrices. Thus there should be a 

recursion limit. Below the recursion limit, the program 

should switchover from Strassen’s algorithm to normal 

matrix multiplication. This will ensure an optimal solution. 

This also means that we do need matrices that are of the 

order 2
n
x2

n
. As long as the dimensions of the matrices are 

perfectly divisible by the recursion limit, we should not face 

any problem. We have discussed further about the recursion 

limit later on in this paper. 

 

IV.  GPU & CUDA 
 
Graphics Processing Units or GPUs have multiple streaming 
processors(SM), which have multiple cores which can be 
used for computational purposes. CUDA allows developers 
to access these cores and use them for their own 
computations, which is known as GPU computing. CUDA is 
a parallel computing platform and application programming 

interface(API) model created by Nvidia. It is a massively 
multi-threaded parallel computing platform.  Using high-
level languages, GPU-accelerated applications run the 
sequential part of their workload on the CPU – which is 
optimized for single-threaded performance – while 
accelerating parallel processing on the GPU.  

 
The Nvidia GPU we have used while conducting 
experiments is Quadro K620. This GPU has 1985 MB of 
memory available for computation. The GeForce 820m has a 
CUDA Capability of 5.0. It has 3 streaming 
multiprocessors(SM), each of which have 128 CUDA cores. 
Thus, in total it has 384 CUDA cores.  The maximum 
number of threads per streaming multiprocessor(SM) is 1536 
and the maximum number of threads per block is 1024.  
 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig 2. Grid of Thread Blocks  
 
Threads and blocks are the main aspects of the CUDA 
Programming Model. CUDA C extends C by allowing the 
programmer to define C functions, called kernels, that, when 
called, are executed N times in parallel by N different 
CUDA threads, as opposed to only once like regular C 
functions [9]. Threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional thread 
index, forming a one-dimensional, two-dimensional, or 
three-dimensional block of threads, called a thread block. 
This provides a natural way to invoke computation across 
the elements in a domain such as a vector, matrix, or 
volume. There is a limit to the number of threads per block, 
since all threads of a block are expected to reside on the 
same processor core and must share the limited memory 
resources of that core. On current GPUs, a thread block may 
contain up to 1024 threads. However, a kernel can be 
executed by multiple equally-shaped thread blocks, so that 
the total number of threads is equal to the number of threads 
per block times the number of blocks. Blocks are organized 
into a one-dimensional, two-dimensional, or three-
dimensional grid of thread blocks. The number of thread 
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blocks in a grid is usually dictated by the size of the data 
being processed or the number of processors in the system, 
which it can greatly exceed [10]. 
  
CUDA threads may access data from multiple memory 
spaces during their execution. Each thread has private local 
memory. Each thread block has shared memory visible to all 
threads of the block and with the same lifetime as the block. 
All threads have access to the same global memory. 
The CUDA programming model assumes that the CUDA 
threads execute on a physically separate device that operates 
as a coprocessor to the host running the C program. This is 
the case, for example, when the kernels execute on a GPU 
and the rest of the C program executes on a CPU. This is 
illustrated by the figure below. 
 

 
      Fig 3. CUDA Programming Model 
 

V. CUDA KERNEL 
 

As stated in the earlier section, Kernels are C functions, 

that, when called, are executed by different CUDA threads 

in parallel. A kernel is defined using the __global__ 

declaration specifier. Each thread that executes the kernel is 

given a unique thread ID that is accessible within the kernel 

through the built-in threadIdx variable [9]. 

As an example, the following code adds two matrices A and 

B of size NxN and stores the result into matrix C: 

__global__ void MatAdd(char *A, char *B, char *C, int N){ 

 int i = blockIdx.x * blockDim.x + threadIdx.x; 

 int j = blockIdx.y * blockDim.y + threadIdx.y; 

 if (i < N && j < N) 

  *(C + i*N + j) = *(A + i*N + j) + *(B + i*N + j); 

} 

int main(){ 

 ... 

 dim3 threadsPerBlock(48, 4); 

 dim3    

 numOfBlocks(N/threadsPerBlock.x,N/threadsPerBlock.y); 

 //Invoking the kernel 

 MatAdd << <numOfBlocks, threadsPerBlock >> >(pA, 

pB, pC, N); 

 ... 

} 

In the above example we have performed matrix addition in 
the kernel “MatAdd.” We have defined the number of 
threads per block using the variable “threadsPerBlock,” 
which is of type dim3.  In this particular example there are  
48x4 threads per block. The total number of blocks have 
been defined using the variable “numOfBlocks” which is of 
type dim3. In this particular example, “threadsPerBlock.x” is 
48, and    “threadsPerBlock.y” is 4. Therefore the total 
number of blocks is N/48 times N/4. Here we have used 
dim3 which is an integer vector type that is used to specify 
dimensions. The syntax for kernel launch is,                           
“function name” << <”number of blocks”, “number of 
threads per block” >> >(“arguments to be sent to the 
kernel”). 

 

The first thing to notice about the kernel is the __global__ 

keyword. This simply indicates that this function may be 

called by either the CPU or the GPU. Another interesting 

thing to notice is, how each thread figures out exactly which 

data element it is supposed to operate on. Each thread runs 

the same code, so the only way to differentiate themselves 

from the other threads is to use the threadIdx, and the   

blockIdx variables. 

 

VI. DESIGN AND IMPLEMENTATION 
 

As stated in the second section, Strassen’s Algorithm is a 

recursive algorithm. A step by step implementation of 

Strassen’s Algorithm is given below: 
Strassen(A, B, N)  
 

1. Compute A11, B11, . . ., A22, B22 by splitting A and B 

into 4 equal parts 

2. If N>Recursion_Limit 

 M1 ← Strassen((A11 + A22), (B11 + B22), N/2) 

 Else 

 Multiply((A11 + A22), (B11 + B22), N) 

3. If N>Recursion_Limit 

 M2 ← Strassen((A21 + A22), B11 , N/2) 

 Else 

  Multiply((A21 + A22), B11, N) 

4. If N>Recursion_Limit 

  M3 ← Strassen(A11, (B12 - B22), N/2) 

 Else 

  Multiply(A11, (B12 – B22), N) 

5. If N>Recursion_Limit 

  M4 ← Strassen(A22, (B21 − B11), N/2) 

 Else 

 Multiply(A22, (B21 − B11), N) 

6. If N>Recursion_Limit 

  M5 ← Strassen((A11 + A12), B22, N/2) 

 Else 
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 Multiply((A11 + A12), B22, N) 

7. If N>Recursion_Limit 

 M6 ← Strassen((A21 − A11), (B11 + B12), N/2) 

 Else 

 Multiply((A21 − A11), (B11 + B12), N) 

8. If N>Recursion_Limit 

  M7 ← Strassen((A12 − A22), (B21 + B22), N/2) 

 Else 

  Multiply((A12 − A22), (B21 + B22), N) 

9. C11 ← M1 + M4 − M5 + M7 

10. C12 ← M3 + M5 

11. C21 ← M2 + M4 

12. C22 ← M1 - M2 + M3 + M6 

13. Output C 

 
In the above algorithm we have multiplied matrices using 
Strassen’s algorithm, but only to a certain limit. Once the 
size of the matrices becomes less than “Recursion_Limit,” 
we use the classic method of matrix multiplication to 
multiply them. This is because, we have found from our 
experiments that below a certain size, there is negligible 
difference between the classic method of matrix 
multiplication and matrix multiplication using Strassen’s 
algorithm.  
 

For executing the program on the GPU, we had to write 

CUDA kernels for addition, subtraction and multiplication. 

The addition and subtraction kernels are based on the 

example given in the previous section, “CUDA Kernel.” The 

multiplication kernel is based on the CUDA sample of 

matrix multiplication provided in the CUDA Toolkit. 

 

VII. EXPERIMENTAL SETUP 
 

While conducting experiments, we have used a workstation 

equipped with Intel Xeon processor. The workstation (HP 

Z440) is equipped with 16 GB RAM. The specifications of 

the GPU have already been stated in the section, “GPU and 

CUDA.” 

 
We have used Fedora 24 and CUDA Toolkit 8.0. The 
CUDA Toolkit includes a compiler for Nvidia GPUs, math 
libraries, and tools for debugging and optimizing the 
performance of applications. It also has programming 
guides, user manuals, and other relevant documentation. The 
programs containing CUDA kernels are compiled with the 
help of the nvcc. CUDA codes run on both CPU and GPU. 
Nvcc separates these two parts and sends the host code (the 
part of the code which is to be run on the CPU) to a C 
compiler. In our experimental setup, the C compiler is gcc 
5.4.0. The device code (the part of the code which is to be 
run on the GPU) is sent to the GPU. The device code is 
further compiled by nvcc. 

 
Fig 4. Flowchart illustrating the function of nvcc 
 

VIII. EXPERIMENTAL RESULTS 

 

We have taken 4 sets of readings for our experiment. The 4 

sets being – matrix multiplication on the CPU, Strassen’s 

algorithm on the CPU, matrix multiplication on the GPU 

and Strassen’s algorithm on the GPU. In this section we will 

list those readings and compare between the different sets of 

data and come to a logical conclusion. 

 
We have used matrices of size 500x500, 1000x1000, 
2000x2000, 4000x4000, 8000x8000 and 16000x16000 for 
all 4 sets of readings. The matrices are of type char. Thus 
each element of the matrix occupies a space of 1 byte 
 
A. CPU 

Table 1. Classic Method of Matrix Multiplication on the 
CPU 

Size Time(in seconds) Experimental 

Multiplier 

500x500 0.45  

1000x1000 3.3 7.3 

2000x2000 26.4 8.0 

4000x4000 490.1 18.6 

8000x8000 4178.6 8.5 

16000x16000 36694.6 8.8 

 
Experimental Multiplier = (Time taken for matrix of size 
nxn)/(Time taken for matrix of size (n/2)x(n/2)) 
 
The complexity of classic matrix multiplication is O(n

3
), 

where nxn is the size of the matrix. If we double the size of 
the matrix, then the complexity becomes O((2n)

3
). As a 

result the time taken by the matrix of size 2nx2n increases 
by a factor of ((2n)

3
/ n

3
) . This yields a result of 8. Thus, for 

an ideal case, the value of the multiplier will be 8.  
 
As we can see, for matrices of size 1000x1000 and 
2000x2000, the multiplier is near to 8, if not exactly 8. 
Considering there are 2 input matrices and 1 output matrix, 
each of equal size; for 1000x1000 the total size of three 
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matrices is 3 MB. For 2000x2000 the total size of three 
matrices is 12 MB. We have calculated the size of each 
matrix by multiplying the space occupied by each element of 
the matrix(1 byte) with the number of elements of the 
matrix. Since 3 MB and 12 MB are both less than the total 
cache memory size of the CPU, the matrices can be  stored 
in the cache. So there will always be a cache hit and data 
transfer will be much faster. Now for matrices of size 
4000x4000, the total size of 3 matrices is 48 MB. This 
exceeds the capacity of the cache memory. Hence, the 
matrices have to be stored on the external memory, which is 
the RAM. So there always be a cache miss. Therefore data 
transfer on the external memory will always take more time. 
That is why the multiplier increases drastically for matrices 
of size 4000x4000. Thereon, all matrices have to be stored 
on the external memory. That is why, after 4000x4000 the 
multiplier once again shows values close to 8, if not exactly 
8. 
There is also an explanation as to why the value of the 
multiplier does not come exactly as 8. Since we are running 
the program on an OS with many applications running in the 
background, the CPU is unable to devote it’s full power to 
executing the program. This is why the multiplier is varying 
a bit. For some cases, the applications in the background 
may not be consuming much resources, or in other cases it 
might be consuming a lot of resources. Taking multiple 
readings, and calculating their average is the best way to 
eliminate this inconsistency, and that is what we have done 
while taking these readings.  
 
Table 2. Matrix Multiplication using Strassen’s Algorithm 
on the CPU 

Size Time(in  

seconds) 

Experimental 

Multiplier 

Recursion 

Limit 

500x500 0.4  125 

1000x1000 2.8 7.0 125 

2000x2000 19.6 7.0 125 

4000x4000 137.3 7.0 125 

8000x8000 963.2 7.0 125 

16000x16000 6749.0 7.0 125 

 
Experimental Multiplier = (Time taken for matrix of size 
nxn)/(Time taken for matrix of size (n/2)x(n/2)) 
The complexity of matrix multiplication using Strassen’s 
algorithm is O(n

2.81
), where nxn is the size of the matrix. If 

we double the size of the matrix, then the complexity 
becomes O((2n)

2.81
). As a result the time taken by the matrix 

of size 2nx2n increases by a factor of ((2n)
2.81

/ n
2.81

) . This 
yields a result of approximately 7. Thus, for an ideal case, 
the value of the multiplier will be approximately 7. 
 
Now for matrix multiplication using Strassen’s algorithm we 
can see that the multiplier is uniform. There is no drastic 
increase in the multiplier for matrices of size 4000x4000. 

This is because we are using recursion. We are constantly 
splitting the matrices until we get matrices that reach the 
recursion limit. Only then do we multiply the matrices using 
the classic method of multiplication. Since the recursion 
limit is 125, that means that when we get matrices of size 
less than or equal to 125x125, only then  do we multiply the 
matrices using the classic method of multiplication. Matrices 
of this size can easily fit inside the cache memory of the 
CPU, thus ensuring fast data transfer. That is why there is no 
drastic change in the multiplier, as matrix size increases 
from 500 onwards.  
 
Now we will compare between the classic method of matrix 
multiplication and matrix multiplication using Strassen’s 
algorithm. Matrix multiplication using Strassen’s algorithm, 
as expected takes less time than the classic method of matrix 
multiplication.  We have drawn further inferences from the 
following table 
Table 3. Comparison between Strassen’s Algorithm and 
Classic Method of Matrix Multiplication on the CPU 

Size Time for 

Strassen(in 

sec) 

Time for Classic 

Method 

(in sec) 

Strassen 

Improvemen

t 

500x500 0.4 0.45 1.13 

1000x1000 2.8 3.3 1.18 

2000x2000 19.6 26.4 1.35 

4000x4000 137.3 490.1 3.57 

8000x8000 963.2 4178.6 4.34 

16000x16000 6749.0 36694.6 5.44 

 
Strassen Improvement = (Time for Classic Method)/  
                                                          (Time for Strassen) 
Thus we can see as the matrices increase in size, the 
improvement in the Strassen’s algorithm increases. Thus we 
can say that, Strassen’s algorithm is effective for matrices of 
large size [4]. 
 
B. GPU 

Table 4. Classic Method of Matrix Multiplication on the 
GPU 

Size Time(in seconds) Experimental 

Multiplier 

500x500 0.005  

1000x1000 0.040 8.0 

2000x2000 0.44 11.0 

4000x4000 3.32 7.5 

8000x8000 26.72 8.0 

16000x16000 224.77 8.4 

Experimental Multiplier = (Time taken for matrix of size 
nxn)/(Time taken for matrix of size (n/2)x(n/2)) 
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As we can see, for the classic method of matrix 
multiplication on the GPU, the multiplier is pretty much 
uniform. However, for smaller sizes, the computation time 
may not be accurate. This is because, the computation time 
itself is quite small. Compared to that small computation 
time, the kernel launch overhead is quite significant. Thus 
the timing for small matrices is not accurate enough. But for 
large matrices, since the kernel launch overhead is negligible 
when compared to the computation time, the timing for large 
matrices is quite accurate. 
 
Table 5. Matrix Multiplication using Strassen’s Algorithm 
on the GPU 

Size Time(in    

seconds) 

Experimental 

Multiplier 

Recursion 

Limit 

500x500 0.2  500 

1000x1000 0.42 2.1 1000 

2000x2000 0.56 1.3 1000 

4000x4000 2.83 5.0 2000 

8000x8000 20.33 7.1 2000 

16000x16000 147.12 7.2 2000 

 
Experimental Multiplier = (Time taken for matrix of size 
nxn)/(Time taken for matrix of size (n/2)x(n/2)) 
 
As we can see from the table, as the size increases, the 
experimental multiplier inches closer to the theoretical 
multiplier. This reinforces the fact that, Strassen’s algorithm 
is more beneficial and viable for matrices of large size. 
When the size of the matrices is comparatively small, the 
kernel launch overhead is quite significant. Also, in 
Strassen’s algorithm we have multiple kernel launches. 
Every time recursion is performed, multiple kernels are 
launched. This increases the computation time, thus yielding 
inconsistent results for smaller matrices. 
 
The recursion limit should always be less than the size of the 
matrix. But for matrices of size 500x500 and 1000x1000 we 
can see that the recursion limit is the same as the size of the 
matrix. This is because, for matrices of small size, the kernel 
launch overhead is quite large compared to the computation 
time. Performing recursion multiple times will result in 
multiple kernel launches, which will increase the 
computation time. 
 
Table 6. Comparison between Strassen’s Algorithm and 

Classic Method of Matrix Multiplication on the GPU 

Size Time 

for 

Strassen

(in s) 

Time for Classic 

Method 

(in s) 

Strassen      

Improvement  

500x500 0.2 0.005 0.025 

1000x1000 0.42 0.040 0.09 

2000x2000 0.56 0.44 0.79 

4000x4000 2.83 3.32 1.17 

8000x8000 20.33 26.72 1.31 

16000x16000 147.12 224.77 1.53 

Strassen Improvement = (Time for Classic Method)/                    
                                                          (Time for Strassen) 
 
As we can see from the above table, the Strassen 
Improvement is quite less for matrices of small size. But as 
the matrix size increases, the Strassen Improvement 
increases. This reinforces our belief that Strassen’s algorithm 
works best for large matrices. 
 

C. CPU & GPU 
Table 7. Comparison between classic method of matrix 
multiplication on CPU and GPU 

Size CPU(in    

seconds) 

GPU(in    

seconds) 

Speedup 

500x500 0.45 0.005 90 

1000x1000 3.3 0.040 82.5 

2000x2000 26.4 0.44 60 

4000x4000 490.1 3.32 147.6 

8000x8000 4178.6 26.72 156.4 

16000x16000 36694.6 224.77 163.3 

Speedup = CPU/GPU 
 

For matrix multiplication on the CPU, we noticed that for 

matrices of size 4000x4000 onwards, the speedup has 

increased a lot because of the cache miss effect in the CPU. 

As we can see from the table, performing matrix 

multiplication on the GPU yields extremely favorable 

results. The above table has been plotted as a graph in the 

figure below. 

 

 
Fig 5. Comparison between classic method of matrix 

multiplication on CPU and GPU 
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Table 8. Comparison between matrix multiplication using 
Strassen’s algorithm on CPU and GPU 

Size CPU(in    

seconds) 

GPU(in    

seconds) 

Speedup 

500x500 0.4 0.2 2 

1000x1000 2.8 0.42 6.7 

2000x2000 19.6 0.56 35 

4000x4000 137.3 2.83 48.5 

8000x8000 963.2 20.33 47.4 

16000x16000 6749.0 147.12 45.9 

Speedup = CPU/GPU 

 

For matrix multiplication using Strassen’s algorithm, we can 

see that the speedup increases gradually, thus again proving 

the fact that Strassen’s algorithm is more beneficial for 

matrices of large sizes. As to why we did not take readings 

beyond 16000x16000. The GPU has a total memory of 2 

GB. In Strassen’s algorithm there are three main matrices 

and multiple sub-matrices. If we go beyond 16000x16000, 

the cumulative space taken up by all the matrices exceeds 2 

GB. The above table has been plotted as a graph in the figure 

below. 

 

 
Fig 6. Comparison between matrix multiplication using 
Strassen’s algorithm on CPU and GPU 
 

IX. CONCLUSION 

 
We can quite safely come to the conclusion that 
implementing matrix multiplication on the GPU is always 
faster than CPU irrespective of the algorithm[11]. We have 
seen that Strassen’s algorithm gives better results when 
matrix size is larger, both on the CPU and the GPU. As long 
as the recursion limit is used in an intelligent manner, 
positive results can be garnered from implementing 
Strassen’s algorithm. 
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