
 © 2016, IJCSE All Rights Reserved 67

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-4, Issue-3 E-ISSN: 2347-2693

Implementation of Fuzzy Text Parser for Querying LAN Configuration

Information

Poornima G. Naik
1*

and Kavita S.Oza
2

1*
Department

of

Computer

Studies

,
CSIBER

,
Kolhapur

,
India

2
 Department of Computer Science, Shivaji University, Kolhapur, India

www.ijcseonline.org

Received: Feb/26/2016 Revised: Mar/09/2016 Accepted: Mar/19/2016 Published: Mar/31/ 2016

Abstract— — In this communication era, keeping pace with current advancements in information and communication

technologies every organization hosts a private network enabling sharing of resources such as softwares and hardware devices.

Such corporate and educational networks facilitate sharing of data in a secure manner but at the same time pose a problem to the

lab technician in keeping track of hardware and software configuration information and their working condition. On many

occasions the softwares which are rarely used may only be installed on couple of machines. Further, as the size of the network

grows locating resources on LAN becomes extremely difficult and time consuming. To address these issues one of the authors

has designed a fuzzy text parser for querying hardware and software related information in a local area network in a human-like

query language. Human-machine interaction is enabled through a set of query languages nomenclatures as Hardware Query

Language (HQL) and Software Query Language (SOQL). In the current paper, authors have provided implementation of the

model for fuzzy text parser by considering different application architectures. The fuzziness in the text parser is incorporated by

giving due consideration to superfluous and implied words which renders the query language close to natural language.

Keywords—Domain Controller, Human Computer Interface, MySQL, Parse Tree, Synonyms, Workgroup.

I. INTRODUCTION

With the continual advancement in communication and
information technologies, there is a paradigm shift from
single user machine to a networked environment extending
reachability beyond organization’s boundaries. While such a
hi-tech environment becomes a boon to an end user, it poses
a great challenge to a lab technician in keeping track of
additional information pertaining to network devices and
softwares installed on different machines along with their
working condition. These tasks can be brought under control
through automation of frequently carried out tasks such as
periodic checking of machine status , status of various
softwares installed on different machines of a network,
periodic checking of security logs etc. Performing any of
these tasks manually is time consuming and error prone. On
many occasions monitoring changes in network
configuration such as IP conflicts, manipulation of IP
addresses of individual machines can bring the entire
network down and needs the lab technician to virtually
check every computer connected to LAN by manually
attending each computer. Further, the network configuration
is only static over a small period of time but is overall
dynamic in nature as continuously new devices are plugged
in and new softwares are installed on the network. Lot of
efforts and time can be saved by automating such common
network routines.

Currently, one of the authors is working on a project
pertaining to design and development of human computer
interaction (HCI) interface for LAN which accepts a query
related to LAN configuration in natural language (NL)

which is parsed using NLP parser developed by the author
by mapping human query to the corresponding SQL query.
The solution poses a unique blend of relational database
management system with knowledge bases. Java interface
to prolog is employed for mapping human queries to prolog
queries. Different types of parsers are developed for the
purpose and compared. DFA parser outscores over other
parsers where extensibility is a prime issue to be addresses
by the parser. However, these parsers are conventional
which do not take into consideration fuzziness inherited in
natural languages. To render the queries closer to the natural
languages and in order to incorporate more human-like
behavior in the queries, the authors in the current paper have
implemented couple of fuzzy functionalities in the
conventional papers. Currently, the fuzzy rule set takes care
of only few rules but can easily be extended further as new
rules are discovered.

In the current paper, the authors have focused on the
following aspects.

• To dynamically discover LAN architecture and to
list various computers in a workgroup and a domain
controller.

• To dynamically discover the various hardware
connected to LAN and softwares installed on different
machines of a network, storing the same persistently in a
centralized database and knowledge base for future usage.

• To design and implement a fuzzy NLP parser to

facilitate an end user and a network administrator. The

queries in the natural language submitted by an end user are

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 68

parsed and evaluated by mapping them to the prolog

queries.

II. LITERATURE REVIEW

In literature there exit numerous papers on natural language

processing applied to various areas to reduce the gap

between human and machine languages [1-8]. Yue et. al. [9]

in their paper have discusses the current situation and

process of natural language processing (NLP) and their

effect of natural language processing in search engine. Alam

[10] has proposed a model for subcategory-based parser For

the purpose of reducing the proliferation of unwanted parse

trees, and collecting information necessary for generating the

semantic representations, the parser uses rules based on

phrasal and lexical subcategories which alleviate parsing

problems such as PP attachment and coordination

attachment, while capable of displaying the dependency of

various types of phrases and clauses, thus facilitating the

writing of grammar. In their paper, the authors have

proposed a unified neural network architecture and learning

algorithm that can be applied to various natural language

processing tasks including part-of-speech tagging, chunking,

named entity recognition, and semantic role labeling by

trying to avoid task-specific engineering and therefore

disregarding a lot of prior knowledge. Instead of exploiting

man-made input features carefully optimized for each task,

their system learns internal representations on the basis of

vast amounts of mostly unlabeled training data. This work is

then used as a basis for building a freely available tagging

system with good performance and minimal computational

requirements. The paper [11] contrasts two strategies for

parsing unrestricted natural language text, the grammar-

driven and the data-driven approach, and compares the ways

in which they deal with the problems of robustness,

disambiguation, accuracy and efficiency. The authors have

argued that the two strategies are complementary rather than

contradictory and that they can be seen as motivated by

different goals and optimization strategies in relation to the

complex problem of parsing unrestricted text. Fuzzy parsing

[12-14] is targeted for reliably extracting information from

partially correct or incomplete input texts. For fuzzy parsing

the underlying grammar is partial with respect to the

original one. Fuzzy approach defines a minimum degree m

of certainty (in the interval [0,1]), with which each

recognized sentence belongs to the original language. The

approach is based on deterministic finite automata where

states define precise contexts within the sentences and edges

represent potential matches of constructs of interest inside

each context. By using this notion of contexts, the search

space becomes smaller, reducing both the time to recognize

the input and the ambiguity conflicts.

III. CONCEPTUAL FRAMEWORK

For querying hardware and software information, four

distinct models have been proposed.

Model 1 :

It is based on manual execution and consists of the

following phases [15].

Phase 1 : Retrieving requisite hardware and software

information by execution of batch file.

The batch file GetHardwareSoftwareInfo.bat containing the

following commands is executed on every client of a local

area network.

psinfo -s > software.txt

wmic csproduct get vendor, version> vendor.txt

wmic logicaldisk get size, freespace, caption >harddisk.txt

ipconFig.> ip.txt

wmic desktopmonitor> monitor.txt

wmic desktopmonitor get screenheight, screenwidth>

monitorsize.txt

net view > workgroups.txt

netview /DOMAIN:siber1.com

Phase 2 :Installation of MySQL server.

MySQL server is installed on a centralized database server

and a database with the name softwares is created with

consists of the tables shown in Fig. 1.

Fig. 1. Structure of Database

Phase 3 : Storing hardware and software information in
MySQL database.

The batch file HardwareSoftwareInfo.bat containing the

following commands is executed on each client of local area

network which stores the hardware information retrieved by

the batch file GetHardwareSoftwareInformation.bat in a

centralized MySQL database.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 69

set path=C:\Program Files\Java\jdk1.5.0\bin

set classpath=MySQL-connector-java-5.1.15-bin.jar;.

javac SearchSoftwares.java

java SearchSoftwares

Pause

Phase 4 : Querying Hardware/Software information using
HQL/SOQL.

The hardware/software conFig.uration details of any
machine can be queried by an end user by connecting to the
MySQL database server by issuing a human query language
which is parsed using both crisp and fuzzy text parsers. Fig.
2. depicts the Model 1 Application Architecture.

Fig. 2. Model1 Application Architecture

Model 2 :

In this model, a grammar is designed for hardware and

software query language which consists of symbol set and

rules for parsing phrases in human query language. Natural

Language Processor (NLP) parser is used to parse

HQL/SOQL queries.

Model 3 :

It is based on execution through a single point of control

and has the following pre-requisites on the remote

machines.

i) Telnet service should be started on each machine of

the network.

ii) File Transfer Service (FTP) should be enabled on

each machine of the network.

It consists of the following phases.

Phase 1: Transferring necessary files to the remote machine

using FTP.

The batch file and the other requisite files are transferred

from the controlling machine to all the clients using FTP.

Phase 2 : Remote execution using Telnet.

Both the batch files are remotely executed using Telnet

service.

Model 4 :

It is based on automatic execution using a high level

language such as Java which uploads the file using URL

and URLConnection classes and remotely executes an

application using TelnetClient class present in the package

org.apache.commons.net.telnet.

A. Application Architecture

The layered architecture for the execution of HQL is shown

below:

The end user issues HQL which is parsed by the text parser

and evaluated by mapping to the corresponding SQL query

which is then executed against the data stored in the

physical database. End user does not have to deal with the

intricacies of SQL queries.

B. Control Flow Diagram

Fig. 3(a)-3(b) show control flow diagrams for

• Reading tokens are assigning unique identifiers to each

of them.

• Reading a sentence and generating a pattern.

• Parsing a sentence using crisp text parser.

Fig. 3(a) Control Flow Diagram for Parsing and Assigning Unique

Identifier to a token.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 70

Fig. 3(b) Control flow Diagram for Parsing Tokens

C. Grammar for HQL and SOQL

To implement HQL and SOQL, we have constructed a

language by defining the set of rules which specify how to

test a string of alphabet letters to verify. A finite set of

symbols used in the language is given by

∑ = {a, b, c, d, e, f, h, i, k, m, n, o, p, r, s, t, u, v, w, x, y}

and a set of words over an alphabet is given by

 L={ are, brands, capacity, different, disk, hard, has, is,

machine, maximum, of, os, processor, ram, speed, version,

what, where, which}

D. Syntax and Semantics of a Natural Language

Languages are defined by their legal sentences. Sentences

are sequences of symbols. The legal sentences are specified

by a grammar. Our first approximation of natural language

is a context-free grammar. A context-free grammar is a set

of rewrite rules, with non-terminal symbols transforming

into a sequence of terminal and non-terminal symbols. A

sentence of the language is a sequence of terminal symbols

generated by such rewriting rules. For example, the

grammar rule

 sentence→noun_phrase, verb_phrase

means that a non-terminal symbol sentence can be a

noun_phrase followed by a verb_phrase. The symbol "→"

means "can be rewritten as."

The complete set of grammar for HQL/SOQL is depicted

below.

sentence -->noun_phrase, verb_phrase, terminator.

noun_phrase -->proper_noun, adjective.

noun_phrase -->determiner, noun.

verb_phrase -->intransitive_verb.

verb_phrase -->intransitive_verb, preposition, determiner.

verb_phrase -->transitive_verb, helping_verb, noun.

The current set of alphabets, words and grammar is

designed to address the following HQL/SOQL queries.

Where is matlab?

2. Which machine has maximum ram?

3. Which machine has maximum hard disk capacity?

4. Which machine has maximum processor speed?

5. What are different OS?

6. What is a version of JDK?

7. What are different machine brands?

The corresponding parse tree is depicted in Fig.s 4(a)-4(e).

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 71

Fig. 4(a)-4(e). Parse Tree for Few commands of HQL.

E. Proposed Algorithm

/* Algorithm in C-Style */

struct Token

{

 int id;

 String name;

}

int no_of_tokens;

Token t[50];

String words[10];

function read_tokens_and_assign_identifiers()

{

 read no_of_tokens;

 for(i=1;i<=no_of_tokens;i++)

 {

 read token_name;

 t[i].id=i;

 t[i].name=token_name;

 }

}

function int get_tokenid(String tokenname)

 for(i=1;i<=no_of_tokens;i++)

 {

 if (t[i].name == tokenname)

 return t[i].id;

 }

 return 0;

}

/*

 Every high-level language has built-in string

manipulation functions present in a string library. The

following functions assume the existence of the following

string manipulation functions.

instr() – Accepts two string arguments and returns the

position of the second string within a first string, if the

string is not found returns -1.

 Right() – Accepts two arguments of type string and int,

respectively and returns a substring of a string passed as the

first argument containing rightmost n characters passed as

the second argument to a function.

*/

function int count_words(String sentence)

{

 int count=0;

 int pos;

 pos=instr(sentence,‖ ―);

while (pos != -1)

 {

 count++;

 sentence=right(sentence,pos+1);

 pos=instr(sentence,‖ ―);

 }

return count;

}

function split_words(String sentence)

{

words=sentence.split(― ―);

}

function String generate_pattern()

{

 String pattern;

read sentence;

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 72

 int cnt=count_words(sentence);

 for(i=1;i<=cnt;i++)

 pattern=pattern+get-tokenid(words[i]);

 return pattern;

}

F. Design and Working of Fuzzy Text Parser.

The following HQL query is issued by the user.

 "what is the maximum processor speed?"

The tokens in the sentence are

{what, is, maximum, processor, speed}.

These are mapped on one-to-one basis to the corresponding

identifiers generated earlier as shown in Fig. 5.

Fig. 5. Mapping of Tokens to Unique Identifiers

The fuzziness in a sentence mainly arises due to the

following two main reasons:

i) Use of synonyms

ii) Stripping of superfluous words with the implicit

 meaning.

In the above human query the only word containing the

synonym is 'maximum' for which the possible synonyms are

:

i) largest

ii) highest

iii) greatest

Hence the following sentences are also semantically valid

and are equivalent to the given query.

i) what is the largest processor speed?

ii) what is the highest processor speed?

iii) what is the greatest processor speed?

Further, the tokens 'what' and 'is' are superfluous. Hence in

a layman's language,

"maximum processor speed?"

is also a valid sentence.

Hence incorporating the synonyms and stripping off the

superfluous words the query

"what is the maximum processor speed?"

will be converted into its following fuzzy counter parts.

i) what is the largest processor speed?

ii) what is the highest processor speed?

iii) what is the greatest processor speed?

iv) largest processor speed?

v) highest processor speed?

vi) greatest processor speed?

All of which should be syntactically correct when parsed

using fuzzy text parser. On the contrary crisp text parser

looks for each and every word in a particular sequence and

maps it to either "correct" or "incorrect" value. On the other

hand fuzzy text parser generates many possible alternative

forms of a given sentence taking into account synonyms and

superfluous words and maps them all to "correct" value.

Mapping of different patterns to correct and incorrect values

by both crisp and fuzzy text parsers are depicted in Fig.s

6(a) and 6(b), respectively.

Fig. 6(a). Mapping of Different Patterns by Crisp Text Parser to

Correct and InCorrect Values

Fig. 6(b). Mapping of Different Patterns by Fuzzy Text Parser to

Correct and Incorrect Values

IV. RESULTS AND ANALYSIS

The model1 proposed above is implemented in VB with

MS-Access as backend. Fig. 7. depicts the sample database

for parsing the sentence using fuzzy text parser.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 73

Fig. 7. Sample Database for Implementation of Fuzzy Text Parser.

Fig. 8. Sample Data Used for Parsing HQL Queries.

Fig. 9 shows dynamic discovery and display of LAN

architecture. Fig.s 10(a)-10(c) depict the graphical user

interfaces (GUI) for assigning unique identifiers to the

various tokens and generating patterns for the various valid

statements.

Fig. 9. LAN Architecture at Department of Computer Studies,

CSIBER.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 74

Fig. 10(a)-10(c) GUI for Storing Tokens and Pattern Generation

Fig. 11(a)-11(b) Parsing Sentence using Crisp Text Parser

Fig. 12(a) Fig. 12(c) show parsing the sentence using fuzzy

text parser whereas Fig. 12(b) and Fig. 12(d) show parsing

the same sentences using crisp text parser. It is observed

that the fuzzy parser accepts the senetence where as crisp

parser rejects the same.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 75

Fig. 12(a)-12(d). Parsing HQL Queries using Fuzzy and Crisp

Text Parsers.

V. CONCLUSION AND SCOPE FOR FUTURE WORK

In the current work authors have designed and developed a

model to dynamically discover LAN architecture and query

for hardware and software configuration information of

each machine connected to LAN. The information is stored

in a centralized MySQL database which can be queried

using Hardware Query Language and Software Query

Language designed by the authors. Both the crisp and fuzzy

text parsers are designed and implemented. Both the parsers

are compared by parsing few test queries by generating the

respective parse tree. Currently, few fuzzy rules are

implemented in the fuzzy parser which can be extended in

future with minimum efforts. The model proposed is

general and can be applied to any local area network.

 Our future work focuses on replacing RDBMS

with a knowledge base and developing NLP parser interface

with the knowledge base using Java interface to Prolog. The

human queries can be converted into Prolog queries which

can be parsed using NLP parser. The queries which are

successfully parsed can be evaluated to generate the desired

output.

REFERENCES

[1]. Klein and C. D. Manning. Natural language grammar

induction using a constituent-context model. In

Advances in Neural Information Processing Systems

(NIPS 14), pages 35–42, 2002.

[2]. Kudo and Y. Matsumoto. Chunking with support

vector machines. In Conference of the North American

Chapter of the Association for Computational

Linguistics & Human Language Technologies

(NAACL-HLT), pages 1–8, 2001.

[3]. Mnih and G. E. Hinton. Three new graphical models

for statistical language modeling, International

Conference on Machine Learning (ICML), pages

641–648, 2007.

[4]. Ronan Collobert, JasonWeston, L´eon Bottou, Michael

Karlen , Koray Kavukcuoglu, Pavel Kuksa, Natural

Language Processing (Almost) from Scratch, Journal

of Machine Learning Research 12 , pages 2493-2537,

2011.

[5]. Saif Mohammad, Bonnie Dorr, and Graeme Hirst,

Computing word-pair antonymy. In Proceedings of the

Conference on Empirical Methods in Natural

Language Processing, , Honolulu, HI. ACL, pages

982–991, 2008.

[6]. Stanley Kok and Pedro Domingos, Extracting

semantic networks from text via relational clustering.

In Proceedings of the Nineteenth European

Conference on Machine Learning, Antwerp, Belgium.

Springer, pages 624–639, 2008.

[7]. Booth, Taylor L. & Richard A. Thompson ,Applying

probability measures to abstract languages. IEEE

Transactions on Computers C-22.5, pages 442–450,

1973.

[8]. Bod, Rens, Beyond Grammar, CSLI Publications,

University of Chicago Press, 1998.

[9]. Xiaoguang Yue, , Guangzhi Di, Yueyun Yu, Wei

Wang, Huankai Shi, Analysis of the Combination of

Natural Language Processing and Search Engine

Technology, Procedia Engineering, Volume 29,

International Workshop on Information and

Electronics Engineering, pages 1636–1639, 2012

[10]. A Subcategory-based Parser Directed to Generating

Representations for Text Understanding, Yukiko

Sasaki Alam, Procedia - Social and Behavioral

Sciences, Volume 27, Pages 194–201, 2011.

[11]. Joakim Nivre, Two Strategies for Text Parsing,

CSLI Publications, University of Chicago Press

[12]. Peter R. J. Asveld. Fuzzy context-free languages – Part

2: Recognition and parsing algorithms. Theoretical

computer science, 347(1):191–213, 2005.

[13]. Rainer Koppler. A systematic approach to fuzzy

parsing. Software Practice and Experience, 27:649,

1996

[14]. Kang , Soon Ju, Kwon , Yong Rae, A Tightly Coupled

Approach to Fuzzy Syntactic Parsing and Neural

Networks for Event-Synchronous Signal Inspection,

Journal of Intelligent and Fuzzy Systems, vol. 3, No.

3, pages 215-227, 1995.

 International Journal of Computer Sciences and Engineering Vol.-4(3), PP(67-76) Mar 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 76

[15]. Santosh Patil and Poornima G. Naik, Design and

Development of Fuzzy Text Parser for Querying

Hardware and Software Information in Local Area

Network, International Journal of current Research,

Vol 8., Issue 03, pp 27434-27437, March 2016.

Author Profile

Dr. Poornima G. Naik, received M.Sc.

degree in Physics and Mathematics and

Ph.D. degree in physics from Karnataka

University, Dharwad. She received

MCA degree from IGNOU with first

class Distinction. Currently, she is

working as Professor in the Department

of Computer Studies, SIBER, Kolhapur. Her areas of

interest are network security, soft computing and cloud

computing. She has participated in several national and

international conferences and has published more than

30 papers in International and national journals of

repute.

Dr. Kavita S. Oza , received Ph.D.

degree in Computer Science from

Shivaji University, Kolhapur.

Currently, she is working as Assistant

Professor in the Department of

Computer Science, Shivaji University,

Kolhapur. Her areas of interest are Data Mining, ICT,

Algorithms, Theory of Languages. She has participated

in several national and international conferences and has

published more than 15 papers in International and

National journals of repute.

