
International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering            Open Access 
Research Paper                                 Volume-3, Issue-6                                                    E-ISSN: 2347-2693 

Correlated Probabilistic Graph with Clustering 
 

Sawant Ashlesha G. 

Department Of Computer Engineering,  

JSPM's Imperial College Of Engineering and Research, Wagholi. 

Email Id:sawantashlesha3@gmail.com 

 

www.ijcseonline.org 

Received: May /30/2015               Revised: June/09/2015                           Accepted: June/22/2015                 Published: June/30/ 2015 

Abstract— Recently, probabilistic graph have more interest in the data mining. After some result it is found that correlations 

may exist among adjacent edges in various probabilistic graphs. As one of the basic mining techniques, graph clustering is 

widely used. Different Clustering methods are used. But, when correlations are considered, it becomes more challenging to 

efficiently cluster probabilistic graphs. Here, we define the problem of clustering correlated probabilistic graphs and its 

techniques. To solve the challenging problem the PEEDR and the DPTC clustering algorithm are defined for each of the 

proposed algorithms, with some several pruning techniques and Different Similarity measures. 
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I. INTRODUCTION  

The process of identifying structure in terms of 

grouping the data elements is called Clustering. The groups 

generated are called clusters. The grouping is usually based 

on some similarity measure defined for the data elements. 

Clustering is having closely relation to unsupervised 

learning in pattern recognition systems [1]. Graphs are 

structures formed by a set of vertices (also called nodes) 

and a set of edges that are connections between pairs of 

vertices. Graph clustering is the task of grouping the 

vertices of the graph into clusters by considering the edge 

structure of the graph in such a way that there should be 

many edges within each cluster and relatively few between 

the clusters.  

As one of the basic data mining techniques, 

clustering is widely used in various graph analysis 

applications [3], such as community detection, index 

construction, etc. This paper focuses on clustering 

correlated probabilistic graphs which aims to partition the 

vertices into several disconnected clusters with high intra-

cluster and low inter-cluster similarity. 

 K-means algorithm is an algorithm based on 

partition, the algorithm assumes that there is a database 

consisting of n objects and k is known as the number of 

clustering. We can make use of the partition method to 

build k partitions (k ≤ n). Each partition denotes a cluster. 

Clustering is also based on the similarity. 

between objects. Usually the distance such as Euclidean 

distance and cosine distance [4]. 

In Protein-Protein Interaction (PPI) networks, the 

interaction between two proteins is generally established 

with a probability property due to the limitation of 

observation methods [3]. In addition, it has been verified 

that the interaction between proteins A and B can influence 

the interaction between protein A and another protein C, if 

A, B and C have some common features. It has been verified 

that the probability of pair wise interaction and correlation 

among edges can be derived from statistical models [6]. 

Clustering applied to such correlated probabilistic protein-

protein interaction network data is helpful in finding 

complexes to analyze the structure properties of the PPI 

Network. 

II.RELATED WORK 

A.Graph Theory 

 A graph G is a pair of sets G = (V, E). V is the set 

of vertices and the number of vertices n = |V| is the order of 

the graph. The set E contains the edges of the graph. In an 

undirected graph, each edge is an unordered pair {v,w}. In a 

directed graph (also called a digraph in much literature), 

edges are ordered pairs. The vertices v and w are called the 

endpoints of the edge. The edge count |E| = m is the size of 

the graph. In a weighted graph ,a weight function w : E → R 

is defined that assigns a weight on each edge. A graph is 

planar if it can be drawn in a plane without any of the edges 

crossing. 

B. Social Network 

Social network is a collection of individuals or 

organizations as well as the links between them, in which 

each node represents an individual and each link between 

two nodes denotes their relationship. Social network analysis 

has emerged as a key technique in many areas, such as 

biology, economics and etc. A key task of social network 

analysis is to find community structure, which is quite 

common in real networks, and being able to identify 

communities within a network can provide insight into how 

network function and topology affect each other. 

 

C. Unsupervised Learning 

Data modeling puts clustering in a historical perspective 

rooted in mathematics, statistics, and numerical analysis 

From a machine learning perspective clusters correspond to 
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hidden patterns, the search for clusters is unsupervised 

learning, and the resulting system represents a data concept. 

From a practical perspective clustering plays an outstanding 

role in data mining applications such as scientific data 

exploration, information retrieval and text mining, spatial 

database applications, Web analysis, CRM, marketing, 

medical diagnostics, computational biology, and many 

others. 

D. Probabilistic Graph Mining 

Clustering and partitioning of deterministic graphs has 

importance in research [6], [7], [8]. These algorithms can be 

used to handle probabilistic graphs by considering the: 

a. Edge probabilities as weights 

 The disadvantage of this approach is that once 

probabilities are converts eights, then no other weights can 

be considered unless the probabilities are multiplied with 

edge weights. In these cases this constituent weight has no 

use. 

b. By setting a threshold value to the probabilities of the 

edges and ignoring any edge with probability below this 

threshold 

The disadvantage of the second approach is that there is 

no rule of deciding what the right value of the threshold is. 

Since both the above methodologies would result in an 

algorithm that would output some node clustering would 

not have specific objective defined over all possible worlds 

of the input probabilistic graph. 

D. Data mining on uncertain data 

 Data mining of uncertain data have lot of 

importance. Several classical data-mining problems are 

there which includes clustering of relational data [10], [11], 

[12], [13], frequent-pattern mining and evaluating spatial 

queries and then new idea is proposed. 

 

E. Querying and Mining the Probabilistic Data with 

Correlations: 

 Recently, correlations among uncertain data are 

having more interest. It proposed a framework to represent 

the correlations among probabilistic tuples. The problem of 

probabilistic path queries in correlated probabilistic 

networks is defines and evaluated [13]. They addressed 

three effective heuristic evaluation functions to in advance 

estimate the conditional probability of each edge.[4] 

proposed a method for sub graph similarity search over 

correlated probabilistic graphs based on possible world 

semantics. Tight lower and upper bounds of the sub graph 

similarity probability were developed to prune the search 

space. Compared to these queries, clustering over correlated 

probabilistic graphs is more complicated. 

III.PROPOSED WORK 

A. PEEDR Algorithm 

This PEEDR (Partially Expected Edit Distance 

Reduction) for finding adjusted vertex PEEDR is used[14]. 

Initialized a cluster with one vertex, then initialized for all 

vertex in cluster, vertex removed from cluster when it reduce 

the expected edit distance from graph to current cluster 

graph. This step is repeated until cluster cannot expand. 

Then next choose a vertex from the unclustered vertices and 

repeat this procedure to generate another cluster. Will get 

final cluster until procedure is not repeated for all vertices 

but, the problem is which vertex is choose in each repeat 

step. The solution is find maximum degree vertex which is 

mostly in centres of cluster, vertices sort in descending order 

of their degree. Prioritize the vertices with higher degree. 

Then initialize virtual cluster which keeps all the unclustered 

vertices. To check each vertex that is adjusted to cluster 

Distance-Probability-Threshold Clique DPTC is used [9] for 

which isReduceEdit algorithm is used .Then, pruning by 

loose bound and pruning by upper bound these techniques 

are used. Then it is redefined according to joint existence 

state. 

 

B. DPTC Clustering Algorithm 

By correlated probabilistic graph and a cluster number 

reduce the number of objects by establishing DPTCs 

(Distance Pint Threshold cliques) first and represent these 

DPTCs as the objects to be clustered. Second, define the 

similarity between pair wise adjacent DPTCs to find the K-

NN of each DPTC[14]. Third, a Laplacian matrix can be 

obtained according to the K-NN results, and propose a new 

approach to calculating the eigenvectors of the Laplacian 

matrix. Then eigenvectors will be represented in a K 

dimensional space, and these points are iteratively clustered 

with a K-means algorithm, such that we get the final cluster 

graph. 

B. Pruning Technique 

Pruning, dissimilarity and similarity measure variations 

lead to many algorithms in literature. We used this point to 

propose our new algorithm. It becomes easier to compare 

too.   

Similarity measure is a quantification of similarity 

function like Euclidean distance , distance, cosine.  Pruning 

is thinning the cluster further and thereby improve the 

prediction accuracy. Pruning identifies the most similar 

classifiers. A diversity measure indicates predictors disagree 

with each other. A pair wise distance between two trees can 

be considered as a measure. K statistics is a measure used in 

genetic algorithms which complements similarity. Thus a 

pruning strategy first computes the κ, origin, and pair wise 
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measures and then chooses the predictors to eliminate the 

dissimilarity. 
 I borrowed  idea of pruning techniques using 

traditional similarity measure which does not include the 

node or edge-based similarity parameters. 

 Formulae for walk starting at iC first hits one of its 

adjacent DPTC jC is defined as 

( )( )
( )∑ ∈

=
ji CCSep D

k

ji epXpCCsim
,

),(  

Where, ( )jCiCS . is the set of edges between iC  

and jC in the correlated probabilistic graph, and ( )peDX is 

the existence state of pe in the DPTC graph DG . 

 The similarity measure considers only the number 

of edges connected in between the cluster. 

Our proposed algorithm considers density ratio (number of 

vertices connected in every cluster) and we modified the 

formulae for similarity as  
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 IV .SYSTEM ARCHITECTURE 

Graph data is collection of a nodes which stores the 

graph node.Which is input of the system that given as input 

for probabilistic graph construction where,nodes are formed 

by using probability. Then grouping of vertices is done 

according to probability.All the nodes are checked with the 

similarity and then pass to the probabilistic graph.Which is 

given as input for PEEDR Algorithm.This algorithm is find 

the Highest degree order nodes. 

 
Fig 4.a System Architecture 

 

Then, DPTC algorithm is performed, which gives the 

output generated is given to the PEEDR algorithm. a new 

approach to calculating the eigenvectors of the Laplacian 

matrix. Then eigenvectors will be represented in a K 

dimensional space, and these points are iteratively clustered 

with a K-means algorithm, such that we get the final cluster 

graph.

 

V.RESULT 

The effect of the optimizations for PEEDR in terms of 

running time for that we comparing it with previous method 

with You-Tube Data Set. PWE is Prununing with Edges And 

PWED is pruning with Edges and Density ratio. 
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Fig.4.b. PEEDR Efficiency vs ϴ:YouTubeCorrelation rate 
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Fig.4.C. PEEDR Efficiency vs ϴ:YouTubeCorrelation rate 

 

VI.CONCLUSION 

In this paper we define probabilistic graphs 

containing correlated adjacent edges as correlated 

probabilistic graphs which is one of the important and basic 

technique in data mining. Algorithm used for finding 

adjusted vertex to cluster PEEDR. To check each vertex 

that is adjusted to cluster Distance-Probability-Threshold 

Clique DPTC is used, Pruning techniques introduced with 

this the efficiency of the PEEDR clustering algorithm 

improved. 
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