Suitability Analysis and Comparison of Rice Bran, Mustered and Blended Oils for High Voltage Applications

Anil Brahmin¹, D.D.Neema², Arpan Dwivedi³, Devanand Bhonsel⁴

^{1,3,4}Electrical Engineering, Shri Shankaracharya Technical Campus, Bhilai (C.G.),India
²Yugantar Institute of Engineering and Technology Rajnandgaon (C.G.), India

^{*}Corresponding Author: firstauthor_anilbrahmin@gmail.com, Tel.: +91-8319119506

Available online at: www.ijcseonline.org

Accepted: 24/Dec/2018, Published: 31/Dec/2018

Abstract— In high voltage applications, the liquid insulating oils are used as the insulating medium as well as cooling medium. For the past several decades, the mineral based transformer oil which are extracted from petroleum crude oil is used traditionally for the purpose of liquid insulations. In the environmental aspect, there are several disadvantages of the mineral oil even though it has better insulating properties. By considering the environmental aspect and insulating properties, the researchers tend to find the alternate insulating fluids for the high voltage applications. Increasing power demand forces the development of the high-rated power devices such as Transformers Circuit Breakers etc. In a transformer, petroleum-based mineral oil is used as insulation, currently Transformer oil produces environmental and health issues because it is non-biodegradable. Thus it has been thought that why not to use vegetable oils if found suitable. The present work investigates breakdown voltage, flash point & fire point of Three different vegetable oils namely Rice Bran (Hareli Brand), Mustered (Fortune Brand) and Blended (75%Rice Bran+25%Mustered) oils. Results obtained from experiments are validated with benchmark results and are found to be in good agreement as per IS-335:1993. The results are reported in dimensional form and presented graphically. The results provide a substantial insight in understanding the behavior of vegetable oil for high voltage applications. The Cost comparison of these oils with standard mineral oil is also tabulated.

Keywords- Breakdown voltage(BDV); Breakdown Trials(BDT); Flash point; Fire point.

I. INTRODUCTION

Based on recent research and development as coconut oil was used in Shri-Lanka as alternate insulating oil for power transformers. A coconut oil filled sealed type distribution transformer had been installed in the Wathara area in Kesbewa, Sri Lanka in 2001 January. Its name plate parameters were three phase, 160 kV, 33 kV/400 V, 50 Hz, etc. This transformer has been supplying a 35 kVA bulk consumer (rubber factory) through a 400 V feeder and domestic consumers through another two 400 V feeders for the last 11 years. During its service, the transformer has been feeding an average load of about 40% and exposed to outdoor tropical weather conditions. The transformer worked well without having any reported failures [1].

In this paper, three samples of Rice Bran, Mustered, and Blended oils which are having brand names as Hareli, Fortune and Blended (75%Rice Bran+25%Mustered) are tested for Breakdown Voltage by standard process and result is compared as per IS-335:1993.

The power transformers are generally subjected to sudden loading which results in high current which results in I2R loss in the transformers, because of which temperature of

© 2018, IJCSE All Rights Reserved

the winding increases and heat is transferred to insulating oil, thus flash point and fire point of the oil must be high enough. Thus above three samples were also tested for flash and fire point by using pensky marten's apparatus and result is compared as per IS standards.

The cost comparison of above three oils with standard mineral oil is also tabulated.

II. EXPEIMENTAL SETUP

Fig-1-Block diagram of experimental setup for breakdown voltage (0-80 kV)

Fig-2 -Detail of electrode with all dimensions in mm

The above figure (1,2) shows the basic circuit setup for the Breakdown Voltage testing. The whole setup is encased inside a Motorized Oil Testing Kit. The kit consists of a test cell in which electrodes are placed and the oil is filled. The other major components are:

1) AC Power Source, 2) Single Phase Variac, 3) A high voltage transformer, 4) Voltmeter, 5) Test cell 6) Electrodes

The supply of 230V is used as an input The output of this unit is 0 to 80kV is applied to electrodes that are open and placed inside a test cell. The whole setup is governed by safety devices and there is a voltmeter provided to monitor the voltage at every moment. pensky marten's apparatus is used for flash and fire point testing of oils, the result so obtained are also verified by Infrared Thermometer.

III. TESTING PROCEDURE

1-Transformer oil testing (BDV testing) procedure-

To assess the insulating property of dielectric transformer oil, a sample of the transformer oil is taken and its breakdown voltage is measured.

• The transformer oil is filled in the vessel of the testing device. Two standard-compliant test electrodes with a typical clearance of 4 mm are surrounded by the dielectric oil.

• A test voltage is applied to the electrodes and is continuously increased up to the breakdown voltage with a constant, standard-compliant slew rate of e.g. 2kV/s.

• At a certain voltage level breakdown occurs in form of an electric arc, leading to a collapse of the test voltage.

• An instant after ignition of the arc, the test voltage is switched off automatically by the testing device. Ultra fast switch off is highly desirable, as the carbonization due to the electric arc must be limited to keep the additional pollution as low as possible.

• The transformer oil testing device measures and reports the root mean square value of the breakdown voltage.

• After the transformer oil test is completed, the insulation oil is stirred and the test sequence is performed repeatedly. (Typically 5 repetitions, depending on the standard)

• As a result the breakdown voltage is calculated as mean value of the individual measurements.

2-Flash point & Fire point test procedure-

Flash point is the lowest temperature at which the lubricating oil gives off enough vapors that ignite for a moment when tiny flame is brought near it. Fire point is the lowest temperature at which the vapors of the oil burn continuously for at least five seconds when a tiny flame is brought near it. Pensky martens testing Procedure:

- Clean and dry all parts of the apparatus with the help of suitable solvent e.g. CCl4, ether, petroleum spirit or benzene and dry it to remove any traces of solvent.
- Fill the oil cup with the test oil up to the mark.
- Fix the lids on the top through which are inserted a thermometer and a stirrer. Ensure that the flame exposure device is fixed on the top.
- Light the test flame and adjust it to about 4 mm in diameter.
- Heat the apparatus as temperature of oil increases by 5° to 60° per minute as stirrer is continuously rotated.
- At every 10° C rise of temperature Introduce test flame into the oil vapor. This is done by operating the shutter. On moving knob of shutter, test flame is lowered in oil vapors through opening.
- When test flame causes a distinct flame in interior cup, note down the temperature which represent the flash point.
- Further heat the oil at the rate of 10°C/ min. and continue applying the test flame as before.
- The temperature at which the vapors of the oil give a clear and distinct blue flash for five seconds is recorded as the fire point of the oil.

IV. RESULTS AND DISCUSSION

Breakdown Voltage Test Results Dielectric breakdown voltage is the measurement

Dielectric breakdown voltage is the measurement of electrical stress that insulating oil can withstand without breakdown. This voltage is usually indicative of the amount of pollutant in the dielectric (usually moisture)

- The samples of oils were taken and placed in air tight containers. S1 sample consisted of Rice Bran (Hareli Brand) Oil
- S2 sample consisted of Mustered (Fortune Brand) oil.

International Journal of Computer Sciences and Engineering

Vol.6(12), Dec 2018, E-ISSN: 2347-2693

- S3 sample consisted of Blended (75%Rice Bran+25%Mustered) oil.
- Each sample was tested 5 times.
- These experiments were replicated twice a day at different temperatures and the mean was taken.
- The result of the experiments is tabulated below for spcific brands of Sunflower, Til(To) and Mustered oils.

	Rice Bran Oil (S1)		Mustered Oil (S2)			Blended Oil (\$3)			
Break down trials	BDV in KV (27 [°] C)	BDV in KV (30°C)	Mean BDV (KV)	BDV in KV (27°C)	BDV in KV (30°C)	Mean BDV (KV)	BDV in KV (27°C)	BDV in KV (30°C)	Mean BDV (KV)
BDT1	32	30	31	59	58	58.5	48	46	47
BDT2	31	29	30	59	57	58	47	44	45.5
BDT3	32	32	32	58	58	58	45	45	45
BDT4	31	31	31	57	56	56.5	46	50	48
BDT5	30	30	30	57	55	56	47	48	47.5
	A verage BD	V =30.8KV		Average	BDV = 57	4KV	Aw	erage BDV =46	.eKV

 Table. 1. Table showing the BDV variations with respect to Temperatures.

Temperature	Breakdown Voltage in KV					
In °C	Rice Bran(S1) Oil	Mustered(S2) Oil	Blended(S3) Oil			
25	30	59	46			
30	31	58	48			
40	32	55	46			

50	37	56	54
60	47	53	55
70	47	51	52

Rice Bran, Mustered, Blended Oils BDV vs Temp.

Fig. 5.

Table.2.	Flash and	Fire	Point	compa	rision	is	as	sho	wn
			below	/ :					

Oil /Brands	Flash Point (°C)	Fire Point (°C)		
Rice Bran/Hareli	218	225		
Mustered/Fortune	328	332		
Blended(75%Hareli+25%Fortune)	320	327		

Table.4. Cost analysis and comparison of vegetable and mineral oils

Oils≯	Mineral Oils	Rice Bran Oil	Mustered Oil	Blended oil
Cost in Rs./Kg	118/-	76/-	110/-	84.5
%Cost wrt Mineral oil	100%	64.4%	93%	71.6%

V. CONCLUSION

This study was undertaken to find out the breakdown voltages of three different mustered oils(Patanjali, Tez and Lal Gulab Brands) in order to determine their suitability as insulating oil in various high voltage applications. From the results obtained, the following conclusions can be made -

(i) The breakdown voltage measurement was influenced by temperature, in Patanjali as well as in Lal Gulab Brands Oil

International Journal of Computer Sciences and Engineering

Vol.6(12), Dec 2018, E-ISSN: 2347-2693

while the Breakdown voltages of the Tez Brand oils didn't show much variation.

(ii) The mean breakdown voltage of 49.2KV was obtained for Patanjali oil, 38.5KV was obtained for the Tez Oil and 51.8KV was obtained for Lal Gulab oil.

(iii) The Flash Point testing of the oils reveal that the flash point of Patanjali Oil is about 329°C while those of Tez Oil and Lal Gulab Oil are about 318°C and 335°C respectively.

(iv)As per IS 335-1993, The BDV Required for Transformer oil is 30KV, Thus this three oils can be used as an alternate for insulating oil in the Transformers and other electrical equipment's which are subjected to high voltage applications.
(v) As per IS 335-1993, The Flash/Fire point Required for Transformer oil must be above 140°C, Thus all above Brands of mustered oils can be used according to Indian standards.

(vi) The findings present a data sheet of breakdown voltage as well as the flash point measurement of the three mustered oils viz. Patanjali, Tez and Lal Gulab brands.

Table.5.The final conclusion can be put in the form of the following table:

Mustered Oil	Average Breakdown voltage (kV)	Flash Point (°C)		
Patanjali Oil	49.2	329		
Tez Oil	38.5	318		
Lal Gulab Oil	51.8	335		

REFERENCES

- [1]. Matharage B. S. H. M. S. Y., Fernando M. A. R. M., Bandara M. A. A. P., Jayantha G. A., Kalpage C. S., 2013. "Performance of Coconut Oil as an Alternative Transformer Liquid Insulation", IEEE Transactions on Dielectrics and Electrical Insulation. 20(3), Page No-887
- [2]. Abderrazzaq M. H.. Hijazi F.. 2012, "Impact of Multi-filtration Process on the Properties of Olive Oil as a Liquid Dielectric", IEEE Transactions on Dielectrics and Electrical Insulation .19.(5)Page No-1673.
- [3]. IEC Publication 296:1982, "Specification for unused mineral insulating oil for transformers and switchgear" (incorporating Amendment 1:1986).
- [4]. Choi C., Yoo H. S. and Oh J. M. 2008,"Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants", Current Appl. Physics. 8(6), Page No-710-712.
- [5]. Fofana I., Borsi H. and Gockenbach E. 2001, "Fundamental investigations on some transformer liquids under various outdoor conditions", IEEE Trans.Dielectr. Electr. Insul. 8, Page No-1040-1047.
- [6]. Hallerberg D.A. 1999, "Less-flammable liquids used intransformers", IEEE Ind. Applicat. Mag.5, Page No. 50-55.
- [7]. HilaireM., Marteau C. and Tobazeon R. 1988, "Apparatus developed for measurement of the resistivity of highly insulating liquids", IEEE Electr. Insul. 23, Page No-779-787.
- [8]. Hosier L., Guushaa A., Vaughan A.S. and SwinglerS.G. 2009. "Selection of a Suitable Vegetable Oil for High Voltage Insulation Application", Phys J. Conf. Series 183 012014.
- [9]. Li J., Grzybowski S., Sun Y. and Chen X. 2007, "Dielectric properties of rapeseed oil paper insulation. Annual Report Conference on Electrical Insulation and Dielectric phenomena". Vancouver, British Columbia, Canada, Page No-500–503.

- [10]. Jian. L., Zhaotao Z., Ping Z., Stanislaw G. and Markus Z. 2012." Preparation of a Vegetable Oil-Based Nano fluid and Investigation of its Breakdown and Dielectric Properties", IEEE Electrical Insulation Magazine.28(5), Page No-0883-7554.
- [11]. Li X., Li J. and Sun C. 2006. "Properties of transgenicrapeseed oil based dielectric liquid", IEEE Southeast Conference, Memphis, TN, Page No- 81–84.

Authors Profile

Prof. Anil Brahmin- Renowned Associate Professor of Electrical Engineering in Chhattisgarh. He has awarded B.E.(Hons) in Electrical Engineering from R.E.C. Kurukshetra in the year 1989 and M.Tech. in Electronics &

Telecommunication from R.E.C.Kurukshetra in the year1995, having teaching experience of 28 years. He has Worked at B.I.T. Durg as Lecturer for 3 years, as Sr. Lecturer at Government Engineering College Raipur for 10 years, Reader& Head (Electrical) at Rungta college of Engineering & Technology Bhilai for 5 years. Presently working as Associate Professo & Head (Electrical) at Shri Shankaracharya Technical Campus Bhilai.

Dr. D. D. Neema-Renowned Professor of Electrical Engineering in Chhattisgarh. He has awarded B.E.in Electrical Engineering from SGSITS Indore in the year 1986 and M.Tech. in control System from MBM Engineering College Jodhpur

(Rajasthan)in the year1997, Ph.D. from CSVTU Bhilai in the year 2010,having teaching experience of 32 years. He has Worked as Associate Professor at Rungta college of Engineering & Technology Bhilai for 10 years, Worked as Director at CITRajnandgaon for 7 years. Presently working as Principal at YITM Rajnandgaon.

Dr. Arpan Dwivedi Mr.Arpan Dwivedi pursed BE in Electrical & Electronics Engineering from RGPV University Bhopal, M.P, India and Master of Technology from RGPV University in 2010. He has done his Ph.D in Electrical Engineering from RKDFIST, Bhopal in 2018, currently working as

Associate Professor at SSGI, Bhilai in Electrical Engineering Department. His main research work focuses on Power Electronics converter development for Renewable energy systems, High Voltage,Hybridization of multiple sources. He has more than 11 years of teaching experience and 4 years of research Experience.

Prof. Devanand Bhonsle Renowned Associate Professor of Electronics & Telecommunication Engineering in Chhattisgarh. He has awarded B.E. in Electronics & Telecommunication Engineering from M.P.C.C.E.T. Bhilai in the year 2004 and M.

E. in Electronics & Telecommunication (Specialization in Communication) from S.S.C.E.T. Bhilai in the year 2008. He is pursuing his Ph. D. from CSVTU, Bhilai. He has been working at Shri Shankaracharya Technical Campus Bhilai for 14 years.