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Abstract —  Data mining an interdisciplinary research area spanning several disciplines such as machine learning, database 
system, expert system, intelligent information systems and statistic. Data mining has evolved into an active and important 
area of research because of previously unknown and interesting knowledge from very large real-world database. Many 
aspects of data mining have been investigated in several related fields. A unique but important aspect of the problem lies in 

the significance of needs to extend their studies to include the nature of the contents of the real world database. In this paper 
we are going to compare the three different algorithms which are commonly used in data mining. These three algorithms are 
CHARM Algorithm, Top K Rules mining and CM SPAM Algorithm.    
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I. INTRODUCTION 

 
In present day human beings are used in the different 
technologies to adequate in there society. Every day the 
human beings are using the vast data and these data are in the 
different fields .It may be in the form of documents, may be 

graphical formats ,may be the video ,may be records (varying 
array ) .As the data are available in the different formats so 
that the proper action to be taken for better utilization of the 
available data. As and when the customer will require the 
data should be retrieved from the database and make the 
better decision. 
 
This technique is actually we called as a data mining or 

Knowledge Hub or simply KDD (Knowledge Discovery 
Process).The important reason that attracted a great deal of 
attention in information technology the discovery of useful 
information from large collections of data industry towards 
field of “Data mining” is due to the perception of “we are 
data rich but information poor”. There is very huge amount 
of data but we hardly able to turn them in to useful 
information and knowledge for managerial decision making 

in different fields. To produce information it requires very 
huge database. It may be available in different formats like 
audio/video, numbers, text, figures, and Hypertext formats. 
To take complete advantage of data; the data retrieval is 
simply not enough, it requires a tool for extraction of the 
essence of information stored, automatic summarization of 
data  and the discovery of patterns in raw data.  
 
With the enormous amount of data stored in databases, files, 

and other repositories, it is very important to develop 
powerful software or tool for analysis and interpretation of 
such data and for the extraction of interesting knowledge that 
could help in decision-making. The only answer to all above 
is ‘Data Mining’. Data mining is the extraction of hidden 

predictive information from large databases; it is a powerful 
technology with great potential to help organizations focus 
on the most important information in their data warehouses 
[1][2][3][4]. Data mining tools predict behaviors and future 
trends help organizations and firms to make proactive 
knowledge-driven decisions [2]. The automated, prospective 

analyses offered by data mining move beyond the analyses of 
past events provided by prospective tools typical of decision 
support systems. Data mining tools can answer the questions 
that traditionally were too time consuming to resolve. They 
created databases for finding predictive information, finding 
hidden patterns that experts may miss because it lies outside 

their expectations.  
 

There are many different algorithm are proposed by the 

different authors for the data mining. In the paper we are 

going to study and compare three algorithms of the data 

mining and they are CHARM algorithm, K rule mining and 

CM SPAM algorithms.  

 

II. DIFFERENT ALGORITHMS 

 

1. CHARM Algorithm 
CHARM is an efficient algorithm for enumerating the set of 
all frequent closed item-sets. There are a number of 
innovative ideas employed in the development of CHARM; 

these include:  
1) CHARM simultaneously explores both the item-set space 
and transaction space, over a novel IT-tree (item set-tides 
tree) search space of the database. In contrast previous 
algorithms exploit only the item-set search space.  
 
2) CHARM uses a highly efficient hybrid search method that 
skips many levels of the IT-tree to quickly identify the 
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frequent closed item-sets, instead of having to enumerate 
many possible subsets.  
 
3) It uses a fast hash-based approach to eliminate non-closed 
item-sets during subsumption checking. CHARM also able 

to utilize a novel vertical data representation called diffset 
[5], for fast frequency computations. Diffsets also keep track 
for differences in the tids of a candidate pattern from its 
prefix pattern. Diffsets drastically cut down (by orders of 
magnitude) the size of memory required to store intermediate 
results. Thus the entire working set of patterns can fit entirely 
in the memory, even for huge databases. 
 
 

Several factors make this a realistic assumption. First, 
CHARM breaks the search space into small independent 
chunks (based on prefix equivalence classes [6]). Second, 
diffsets lead to extremely small memory footprint. Finally, 
CHARM uses simple set difference operations and not 
requires any complex internal data structures (candidate 
generation and counting happens in a single step). The 
current trend toward large (gigabyte-sized) main memories, 

combined with the above features, makes CHARM a 
efficient and practical algorithm for reasonably large 
databases. 
 
The CHARM Algorithm for the data mining is as follows: 
 
CHARM (D, min sup): 

1. [P] = {Xi × t(Xi) : Xi ∈ I ∧ σ (Xi) ≥  min sup} 

2. CHARM-Extend ([P], C = ∅ ) 

3. return C //all closed sets 
CHARM-Extend ([P], C): 

4. for each Xi × t(Xi) in [P] 

5. [Pi] = ∅  and X = Xi 

6. for each Xj × t(Xj) in [P], with Xj ≥ f Xi 

7. X = X ∪ Xj and Y = t(Xi) ∩ t(Xj) 

8. CHARM-Property([P], [Pi]) 

9. if ([Pi] = ∅ ) then CHARM-Extend ([Pi], C) 

10. delete [Pi] 

11. C = C ∪ X //if X is not subsumed 

 
CHARM-Property ([P], [Pi]): 

12. if (σ(X) ≥  minsup) then 

13. if t(Xi) = t(Xj) then //Property 1 

14. Remove Xj from [P] 
15. Replace all Xi with X 

16. else if t(Xi) ⊂ t(Xj) then //Property 2 

17. Replace all Xi with X 

18. else if t(Xi) ⊃ t(Xj) then //Property 3 

19. Remove Xj from [P] 

20. Add X × Y to [Pi] //use ordering f 

21. else if t(Xi) = t(Xj) then //Property 4 

22. Add X × Y to [Pi] //use ordering f 

 
CHARM simultaneously explores both the itemset space and 

tidset space using the IT-tree, unlike old algorithms which 
typically exploit only the itemset space. CHARM uses a 
novel search method, which is based on the IT-pair 

properties, that skips many levels in the IT-tree to quickly 
converge on the itemset closures, rather than having to 
enumerate many possible subsets. 
 

2. Mining Top K Association Rule  

 
 Association rule mining [7] consists of discovering 
associations between items in transportation. It is the most 
important data mining tasks. It has been integrated in many 

commercial data mining software and has wide applications 
in several domains.  
 
The idea of mining top-k association rules presented in this 
paper is analogous to the idea of mining top-k itemsets [8] 
and top-k sequential patterns [9] [10] [11] in the field of 
frequent pattern mining in database. Note that although many 
authors have previously used the term “top-k association 

rules”, they did not use the actual standard definition of an 
association rule. KORD [12] [13] only finds rules with a 
single item in the consequent, whereas the algorithm of You 
et al. [14] consists of mining association rules from a stream 
instead of a transaction database.  
 
To achieve this goal, a question is how to combine the 
concept of top-k pattern mining with association rules? Two 

thresholds are used For association rule mining. But, in 
practice minsup is much more difficult to set than minconf 

because minsup depends on database characteristics that are 
unknown to most users, whereas minconf represents the 
minimal confidence that users want in rules and is generally 
easy to determine. For this reason, we define “top-k” on the 
support rather than the confidence. 
 
The algorithm main idea is the following. Top K Rules first 

sets an internal minsup variable to 0. Then, the algorithm 
starts searching for rules. As soon as a rule is found, it is 
added to a list of rules L ordered by the support. The list is 
used to maintain the top-k rules found until now. Once k 

valid rules are found, the internal minsup variable is raised to 
the support of the rule with the lowest support in L. Raising 
the minsup value is used to prune the search space when 
searching for more rules. Thereafter, each time a valid rule is 

found, the rule is inserted in L, the rules in L not respecting 
minsup anymore are removed from L, and minsup is raised to 
the value of the least interesting rule in L. The algorithm 
continues searching for more rules until no rule are found, 
which means that it has found the top-k rules. 
 
To search for rules, Top K Rules does not rely on the 
classical two steps approach to generate rules because it 

would not be efficient as a top-k algorithm (as explained in 
the introduction). The strategy used by Top K Rules instead 
consists of generating rules containing a single item in the 
antecedent and a single item in the consequent. Then, each 
rule is recursively grown by adding items to the antecedent or 
consequent. To select the items that are added to a rule to 
grow it, it scans the transactions containing the rule to find 
single items that could expand its right or left part. The name 
of the two processes for expanding rules in Top K Rules is 

right expansion and left expansion. These processes can be 
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applied recursively to explore the search space of association 
rules. 
 
Another idea incorporated in Top K Rules is to try to 
generate the most promising rules first. This is because if 

rules with high support are found earlier, Top K Rules can 
raise its internal minsup variable faster to prune the search 
space. To perform this, Top K Rules uses an internal variable 
R to store all the rules that can be expanded to have a chance 
of finding more valid rules. Top K Rules uses this set to 
determine the rules that are the most likely to produce valid 
rules with a high support to raise minsup more quickly and 
prune a larger part of the search space. 
 

The Top K Rule algorithm is as follows: 
 
TOPKRULES(T, k, minconf) R := Ø. L := Ø. minsup := 0.  
1. Scan the database T once to record the tidset of each item.  

2. FOR each pairs of items i, j such that |tids(i)| ×|T| ≥ minsup 

and |tids(j)| ×|T| ≥ minsup:  

3. sup({i}→{j}) := |tids(i) ∩ tids(j)| / |T |.  

4. sup({j}→{i}) := |tids(i) ∩ tids(j)| / |T|.  

5. conf({i}→{j}) := |tids(i) ∩ tids(j)| / |tids(i)|.  

6. conf({j}→{i}) := |tids(i) ∩ tids(j)| / |tids(j)|.  

7. IF sup({i}→{j}) ≥ minsup THEN  

8. IF conf({i}→{j}) ≥ minconf THEN SAVE({i}→{j}, L, k, 

minsup).  

9. IF conf({j}→{i}) ≥ minconf THEN SAVE({j}→{i}, L, k, 

minsup).  

10. Set flag expandLR of {i}→{j}to true.  

11. Set flag expandLR of {j}→{i}to true.  

12. R := R∪{{i}→{j}, {j}→{i}}.  

13. END IF  

14. END FOR  

15. WHILE ∃r ∈ R AND sup(r) ≥ minsup DO  

16. Select the rule rule having the highest support in R  

17. IF rule.expandLR = true THEN  

18. EXPAND-L(rule, L, R, k, minsup, minconf).  

19. EXPAND-R(rule, L, R, k, minsup, minconf).  

20. ELSE EXPAND-R(rule, L, R, k, minsup, minconf).  

21. REMOVE rule from R.  

22. REMOVE from R all rules r ∈ R | sup(r) <minsup.  

23. END WHILE  
 
The main procedure of Top K Rules is shown above. The 
algorithm first scans the database once to calculate tids({c}) 
for each single item c in the database (line 1). Then, the 
algorithm generates all valid rules of size 1*1 by considering 

each pair of items i, j, where i and j each have at least 
minsup×|T| tids (if this condition is not met, clearly, no rule 
having at least the minimum support can be created with i, j) 
(line 2). The supports of the rules {i}→{j} and {j}→{i} are 
simply obtained by dividing |tids(i→ j)| by |T| and |tids(j→ i)| 
by |T| (line 3 and 4). The confidence of the rules {i}→{j} 
and {j}→{i} is obtained by dividing |tids(i→ j)| by |tids(i)| 
and |tids(j→ i)| by | tids(j)| (line 5 and 6). Then, for each rule 
{i}→{j} or {j}→{i} that is valid, the procedure SAVE is 

called with the rule and L as parameters so that the rule is 
recorded in the set L of the current top-k rules found (line 7 

to 9). Also, each rule {i}→{j} or {j}→{i} that is frequent is 
added to the set R, to be later considered for expansion and a 
special flag named expandLR is set to true for each such rule 
(line 10 to 12). 
 

After that, a loop is performed to recursively select the rule r 

with the highest support in R such that sup(r) ≥ minsup and 
expand it (line 15 to 23). The idea is to always expand the 
rule having the highest support because it is more likely to 
generate rules having a high support and thus to allow to 
raise minsup more quickly for pruning the search space. 
When there is no more rule in R with a support higher than 
minsup the loop terminated. For each rule, a flag expandLR 

indicates if the rule should be left and right expanded by 

calling the procedure EXPAND-L and EXPAND-R or just 
left expanded by calling EXPAND-L. For all rules of size 
1*1, this flag is set to true. 
 

3. CM SPAM Algorithm 
 

Mining useful patterns in sequential data is a challenging 
task. Many studies have been proposed for mining 
interesting patterns in sequence databases [15]. Sequential 
pattern mining is probably the most popular research topic 

among them. A subsequence is called sequential pattern or 
frequent sequence if it frequently appears in a sequence 
database and its frequency is no less than a user-specified 
minimum support threshold minsup [16]. Sequential pattern 
mining plays an important role in data mining and is essential 
to a wide range of applications such as the analysis of web 
medical data, program executions, click-streams, e-learning 
data and biological data [15]. Several efficient algorithms 

have been proposed for sequential data mining and one of 
them is CM SPAM Algorithm. 
 
Problem with sequential data mining, Let I = {i1, i2, ..., il} be 
a set of items (symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is 
an unordered set of distinct items. The lexicographical order 

>lex is defined as any total order on I. Without loss of 
generality, it is assumed in the following that all itemsets are 

ordered according to >lex. A sequence is an ordered list of 
itemsets s = <I1, I2, ..., In > such that Ik ⊆ I (1 ≤ k ≤ n). A 
sequence database SDB is a list of sequences SDB = >s1, s2, 

..., sp_ having sequence identifiers (SIDs) 1, 2...p. Example. 

A sequence database is shown in Fig. 1 (left). It contains four 
sequences having the SIDs 1, 2, 3 and 4. Each single letter 
represents an item. Items between curly brackets represent an 
itemset. The first sequence <{a, b}, {c}, {f, g}, {g}, 
{e}>contains five itemsets. It indicates that items a and b 

occurred at the same time, were followed by c, then f, g and 
lastly e. 
 

 
(a) 
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(b) 

 
Figure.1 A sequence database (a) and some sequential patterns found (b) 

 
The pseudocode of SPAM is shown below. SPAM take as 
input a sequence database SDB and the minsup threshold. 
SPAM first scans the input database SDB once to construct 
the vertical representation of the database V (SDB) and the 
set of frequent items F1. For each frequent item s ∈ F1, 
SPAM calls the SEARCH procedure with <s>, F1, {e ∈ 

F1|e >lex s}, and minsup. The SEARCH procedure outputs 

the pattern <{s}> and recursively explore candidate patterns 
starting with the prefix <{s}>. The SEARCH procedure 
takes as parameters a sequential pattern pat and two sets of 
items to be appended to pat to generate candidates. The first 
set Sn represents items to be appended to pat by s-extension. 
The s-extension of a sequential pattern <I1, I2, ...Ih> with an 
item x is defined as <I1, I2, ...Ih>, {x}>. The second set Si 

represents items to be appended to pat by i-extension. The 
i-extension of a sequential pattern <I1, I2, ...Ih> with an item 

x is defined as <I1, I2, ...Ih ∪{x}>. For each candidate pat 

generated by an extension, SPAM calculate its support to 
determine if it is frequent. This is done by making a join 
operation (see [3] for details) and counting the number of 
sequences where the pattern appears. The IdList 
representation used by SPAM is based on bitmaps to get 
faster operations 
[3]. If the pattern pat is frequent, it is then used in a recursive 

call to SEARCH to generate patterns starting with the prefix 
pat. Note that in the recursive call, only items that resulted in 
a frequent pattern by extension of pat are considered for 
extending pat. SPAM prunes the search space by not 
extending infrequent patterns. This can be done due to the 
property that an infrequent sequential pattern cannot be 
extended to form a frequent pattern [1]. 
 

SPAM(SDB, minsup) 

1. Scan SDB to create V(SDB) and identify F1, the 

list of frequent items. 

2. FOR each item s ∈ F1, 

3. SEARCH(<s>, F1, {e > F1 | e >lex s}, minsup). 

 
SEARCH(pat, Sn, In, minsup) 
1. Output pattern pat. 

2. Stemp := Itemp := Ø 
3. FOR each item j ∈  Sn, 
4. IF the s-extension of pat is frequent THEN Stemp := 

Stemp ∪ {{i}. 
5. FOR each item j∈   Stemp, 

6. SEARCH(the s-extension of pat with j, Stemp , {e ∈   
Stemp | e >lex j}, minsup). 
7. FOR each item j ∈   In, 
8. IF the i-extension of pat is frequent THEN Itemp := Itemp 
∪ {i}. 

9. FOR each item j ∈    Itemp, 
10. SEARCH(i-extension of pat with j, Stemp , {e ∈    Itemp 
| e >lex j}, minsup). 
 

 

III. ALGORITHMS RESULT EVALUATION 

 
In this paper we study different algorithms for the data 

mining the result evaluation of those algorithms are shown 
below. This helps to evaluate all the studies algorithm and 
compare them with each other. 
 
 
 

Database 
name 

Item Avg. 
Length 

Time(s) Max 
Pattern 

(%) 

Chess 76 37 20 20 

Connect 130 43 40 10 

Mushrooms 120 23 9 0.075 

Gazelle 498 2.5 10 0.01 

 
Table 1 Performance Evaluations of CHARM  

 

Database 
name 

Item Avg. 
Length 

Time(s) Max 
Pattern 

(%) 

Chess 75 37 8 1.49 

Connect 129 43 283 25.51 

Mushrooms 128 23 20 3.46 

Gazelle 498 2.5 368 46.39 

 
Table 2.  Performance Evaluations of Top K rule 

 

Database 
name 

Item Avg. 
Length 

Time(s) Max 
Pattern 

(%) 

Chess 76 37 15 18.81 

Connect 130 43 40 12.3 

Mushrooms 120 23 60 0.59 

Gazelle 498 2.5 80 24.08 

 
Table 3 Performance Evaluations of CM SPAM  

IV. CONCLUSION 

This paper has attempted to review the three data mining 
algorithms i.e. CHARM algorithm, K rule mining and CM 
SPAM algorithms. We also see all the aspects of these three 
algorithms. We compare the Performance of the all three 
algorithms and study their results.We observe that the time 
complexity of Charm algorithm is better as compare to Top 
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K rule and CM-Spam, While the maximum pattern matching 
percentages is best for TopK rule.   
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