
© 2014, IJCSE All Rights Reserved 54

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access
 Survey Paper Volume-2, Issue-10 E-ISSN: 2347-2693

Comparison on Different Data Mining Algorithms

Aruna J. Chamatkar1* and P.K. Butey 2

1*
 Research Scholar , Department Of Electronics & Computer Sci., RTM Nagpur University, Nagpur , India

2
HOD, Computer Science Department, Kamla Nehru Mahavidyalaya ,Nagpur India

www.ijcaonline.org

Received: 22 Sep 2014 Revised: 11 Oct 2014 Accepted: 24 Oct 2014 Published: 31 Oct 2014

Abstract — Data mining an interdisciplinary research area spanning several disciplines such as machine learning, database
system, expert system, intelligent information systems and statistic. Data mining has evolved into an active and important
area of research because of previously unknown and interesting knowledge from very large real-world database. Many
aspects of data mining have been investigated in several related fields. A unique but important aspect of the problem lies in

the significance of needs to extend their studies to include the nature of the contents of the real world database. In this paper
we are going to compare the three different algorithms which are commonly used in data mining. These three algorithms are
CHARM Algorithm, Top K Rules mining and CM SPAM Algorithm.

Keywords - Data Mining, CHARM algorithm, K rule mining, CM SPAM Algorithm

I. INTRODUCTION

In present day human beings are used in the different
technologies to adequate in there society. Every day the
human beings are using the vast data and these data are in the
different fields .It may be in the form of documents, may be

graphical formats ,may be the video ,may be records (varying
array) .As the data are available in the different formats so
that the proper action to be taken for better utilization of the
available data. As and when the customer will require the
data should be retrieved from the database and make the
better decision.

This technique is actually we called as a data mining or

Knowledge Hub or simply KDD (Knowledge Discovery
Process).The important reason that attracted a great deal of
attention in information technology the discovery of useful
information from large collections of data industry towards
field of “Data mining” is due to the perception of “we are
data rich but information poor”. There is very huge amount
of data but we hardly able to turn them in to useful
information and knowledge for managerial decision making

in different fields. To produce information it requires very
huge database. It may be available in different formats like
audio/video, numbers, text, figures, and Hypertext formats.
To take complete advantage of data; the data retrieval is
simply not enough, it requires a tool for extraction of the
essence of information stored, automatic summarization of
data and the discovery of patterns in raw data.

With the enormous amount of data stored in databases, files,

and other repositories, it is very important to develop
powerful software or tool for analysis and interpretation of
such data and for the extraction of interesting knowledge that
could help in decision-making. The only answer to all above
is ‘Data Mining’. Data mining is the extraction of hidden

predictive information from large databases; it is a powerful
technology with great potential to help organizations focus
on the most important information in their data warehouses
[1][2][3][4]. Data mining tools predict behaviors and future
trends help organizations and firms to make proactive
knowledge-driven decisions [2]. The automated, prospective

analyses offered by data mining move beyond the analyses of
past events provided by prospective tools typical of decision
support systems. Data mining tools can answer the questions
that traditionally were too time consuming to resolve. They
created databases for finding predictive information, finding
hidden patterns that experts may miss because it lies outside

their expectations.

There are many different algorithm are proposed by the

different authors for the data mining. In the paper we are

going to study and compare three algorithms of the data

mining and they are CHARM algorithm, K rule mining and

CM SPAM algorithms.

II. DIFFERENT ALGORITHMS

1. CHARM Algorithm
CHARM is an efficient algorithm for enumerating the set of
all frequent closed item-sets. There are a number of
innovative ideas employed in the development of CHARM;

these include:
1) CHARM simultaneously explores both the item-set space
and transaction space, over a novel IT-tree (item set-tides
tree) search space of the database. In contrast previous
algorithms exploit only the item-set search space.

2) CHARM uses a highly efficient hybrid search method that
skips many levels of the IT-tree to quickly identify the

 International Journal of Computer Sciences and Engineering Vol.-2(10), PP(54-58) Oct 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 55

frequent closed item-sets, instead of having to enumerate
many possible subsets.

3) It uses a fast hash-based approach to eliminate non-closed
item-sets during subsumption checking. CHARM also able

to utilize a novel vertical data representation called diffset
[5], for fast frequency computations. Diffsets also keep track
for differences in the tids of a candidate pattern from its
prefix pattern. Diffsets drastically cut down (by orders of
magnitude) the size of memory required to store intermediate
results. Thus the entire working set of patterns can fit entirely
in the memory, even for huge databases.

Several factors make this a realistic assumption. First,
CHARM breaks the search space into small independent
chunks (based on prefix equivalence classes [6]). Second,
diffsets lead to extremely small memory footprint. Finally,
CHARM uses simple set difference operations and not
requires any complex internal data structures (candidate
generation and counting happens in a single step). The
current trend toward large (gigabyte-sized) main memories,

combined with the above features, makes CHARM a
efficient and practical algorithm for reasonably large
databases.

The CHARM Algorithm for the data mining is as follows:

CHARM (D, min sup):

1. [P] = {Xi × t(Xi) : Xi ∈ I ∧ σ (Xi) ≥ min sup}

2. CHARM-Extend ([P], C = ∅)

3. return C //all closed sets
CHARM-Extend ([P], C):

4. for each Xi × t(Xi) in [P]

5. [Pi] = ∅ and X = Xi

6. for each Xj × t(Xj) in [P], with Xj ≥ f Xi

7. X = X ∪ Xj and Y = t(Xi) ∩ t(Xj)

8. CHARM-Property([P], [Pi])

9. if ([Pi] = ∅) then CHARM-Extend ([Pi], C)

10. delete [Pi]

11. C = C ∪ X //if X is not subsumed

CHARM-Property ([P], [Pi]):

12. if (σ(X) ≥ minsup) then

13. if t(Xi) = t(Xj) then //Property 1

14. Remove Xj from [P]
15. Replace all Xi with X

16. else if t(Xi) ⊂ t(Xj) then //Property 2

17. Replace all Xi with X

18. else if t(Xi) ⊃ t(Xj) then //Property 3

19. Remove Xj from [P]

20. Add X × Y to [Pi] //use ordering f

21. else if t(Xi) = t(Xj) then //Property 4

22. Add X × Y to [Pi] //use ordering f

CHARM simultaneously explores both the itemset space and

tidset space using the IT-tree, unlike old algorithms which
typically exploit only the itemset space. CHARM uses a
novel search method, which is based on the IT-pair

properties, that skips many levels in the IT-tree to quickly
converge on the itemset closures, rather than having to
enumerate many possible subsets.

2. Mining Top K Association Rule

 Association rule mining [7] consists of discovering
associations between items in transportation. It is the most
important data mining tasks. It has been integrated in many

commercial data mining software and has wide applications
in several domains.

The idea of mining top-k association rules presented in this
paper is analogous to the idea of mining top-k itemsets [8]
and top-k sequential patterns [9] [10] [11] in the field of
frequent pattern mining in database. Note that although many
authors have previously used the term “top-k association

rules”, they did not use the actual standard definition of an
association rule. KORD [12] [13] only finds rules with a
single item in the consequent, whereas the algorithm of You
et al. [14] consists of mining association rules from a stream
instead of a transaction database.

To achieve this goal, a question is how to combine the
concept of top-k pattern mining with association rules? Two

thresholds are used For association rule mining. But, in
practice minsup is much more difficult to set than minconf

because minsup depends on database characteristics that are
unknown to most users, whereas minconf represents the
minimal confidence that users want in rules and is generally
easy to determine. For this reason, we define “top-k” on the
support rather than the confidence.

The algorithm main idea is the following. Top K Rules first

sets an internal minsup variable to 0. Then, the algorithm
starts searching for rules. As soon as a rule is found, it is
added to a list of rules L ordered by the support. The list is
used to maintain the top-k rules found until now. Once k

valid rules are found, the internal minsup variable is raised to
the support of the rule with the lowest support in L. Raising
the minsup value is used to prune the search space when
searching for more rules. Thereafter, each time a valid rule is

found, the rule is inserted in L, the rules in L not respecting
minsup anymore are removed from L, and minsup is raised to
the value of the least interesting rule in L. The algorithm
continues searching for more rules until no rule are found,
which means that it has found the top-k rules.

To search for rules, Top K Rules does not rely on the
classical two steps approach to generate rules because it

would not be efficient as a top-k algorithm (as explained in
the introduction). The strategy used by Top K Rules instead
consists of generating rules containing a single item in the
antecedent and a single item in the consequent. Then, each
rule is recursively grown by adding items to the antecedent or
consequent. To select the items that are added to a rule to
grow it, it scans the transactions containing the rule to find
single items that could expand its right or left part. The name
of the two processes for expanding rules in Top K Rules is

right expansion and left expansion. These processes can be

 International Journal of Computer Sciences and Engineering Vol.-2(10), PP(54-58) Oct 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 56

applied recursively to explore the search space of association
rules.

Another idea incorporated in Top K Rules is to try to
generate the most promising rules first. This is because if

rules with high support are found earlier, Top K Rules can
raise its internal minsup variable faster to prune the search
space. To perform this, Top K Rules uses an internal variable
R to store all the rules that can be expanded to have a chance
of finding more valid rules. Top K Rules uses this set to
determine the rules that are the most likely to produce valid
rules with a high support to raise minsup more quickly and
prune a larger part of the search space.

The Top K Rule algorithm is as follows:

TOPKRULES(T, k, minconf) R := Ø. L := Ø. minsup := 0.
1. Scan the database T once to record the tidset of each item.

2. FOR each pairs of items i, j such that |tids(i)| ×|T| ≥ minsup

and |tids(j)| ×|T| ≥ minsup:

3. sup({i}→{j}) := |tids(i) ∩ tids(j)| / |T |.

4. sup({j}→{i}) := |tids(i) ∩ tids(j)| / |T|.

5. conf({i}→{j}) := |tids(i) ∩ tids(j)| / |tids(i)|.

6. conf({j}→{i}) := |tids(i) ∩ tids(j)| / |tids(j)|.

7. IF sup({i}→{j}) ≥ minsup THEN

8. IF conf({i}→{j}) ≥ minconf THEN SAVE({i}→{j}, L, k,

minsup).

9. IF conf({j}→{i}) ≥ minconf THEN SAVE({j}→{i}, L, k,

minsup).

10. Set flag expandLR of {i}→{j}to true.

11. Set flag expandLR of {j}→{i}to true.

12. R := R∪{{i}→{j}, {j}→{i}}.

13. END IF

14. END FOR

15. WHILE ∃r ∈ R AND sup(r) ≥ minsup DO

16. Select the rule rule having the highest support in R

17. IF rule.expandLR = true THEN

18. EXPAND-L(rule, L, R, k, minsup, minconf).

19. EXPAND-R(rule, L, R, k, minsup, minconf).

20. ELSE EXPAND-R(rule, L, R, k, minsup, minconf).

21. REMOVE rule from R.

22. REMOVE from R all rules r ∈ R | sup(r) <minsup.

23. END WHILE

The main procedure of Top K Rules is shown above. The
algorithm first scans the database once to calculate tids({c})
for each single item c in the database (line 1). Then, the
algorithm generates all valid rules of size 1*1 by considering

each pair of items i, j, where i and j each have at least
minsup×|T| tids (if this condition is not met, clearly, no rule
having at least the minimum support can be created with i, j)
(line 2). The supports of the rules {i}→{j} and {j}→{i} are
simply obtained by dividing |tids(i→ j)| by |T| and |tids(j→ i)|
by |T| (line 3 and 4). The confidence of the rules {i}→{j}
and {j}→{i} is obtained by dividing |tids(i→ j)| by |tids(i)|
and |tids(j→ i)| by | tids(j)| (line 5 and 6). Then, for each rule
{i}→{j} or {j}→{i} that is valid, the procedure SAVE is

called with the rule and L as parameters so that the rule is
recorded in the set L of the current top-k rules found (line 7

to 9). Also, each rule {i}→{j} or {j}→{i} that is frequent is
added to the set R, to be later considered for expansion and a
special flag named expandLR is set to true for each such rule
(line 10 to 12).

After that, a loop is performed to recursively select the rule r

with the highest support in R such that sup(r) ≥ minsup and
expand it (line 15 to 23). The idea is to always expand the
rule having the highest support because it is more likely to
generate rules having a high support and thus to allow to
raise minsup more quickly for pruning the search space.
When there is no more rule in R with a support higher than
minsup the loop terminated. For each rule, a flag expandLR

indicates if the rule should be left and right expanded by

calling the procedure EXPAND-L and EXPAND-R or just
left expanded by calling EXPAND-L. For all rules of size
1*1, this flag is set to true.

3. CM SPAM Algorithm

Mining useful patterns in sequential data is a challenging
task. Many studies have been proposed for mining
interesting patterns in sequence databases [15]. Sequential
pattern mining is probably the most popular research topic

among them. A subsequence is called sequential pattern or
frequent sequence if it frequently appears in a sequence
database and its frequency is no less than a user-specified
minimum support threshold minsup [16]. Sequential pattern
mining plays an important role in data mining and is essential
to a wide range of applications such as the analysis of web
medical data, program executions, click-streams, e-learning
data and biological data [15]. Several efficient algorithms

have been proposed for sequential data mining and one of
them is CM SPAM Algorithm.

Problem with sequential data mining, Let I = {i1, i2, ..., il} be
a set of items (symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is
an unordered set of distinct items. The lexicographical order

>lex is defined as any total order on I. Without loss of
generality, it is assumed in the following that all itemsets are

ordered according to >lex. A sequence is an ordered list of
itemsets s = <I1, I2, ..., In > such that Ik ⊆ I (1 ≤ k ≤ n). A
sequence database SDB is a list of sequences SDB = >s1, s2,

..., sp_ having sequence identifiers (SIDs) 1, 2...p. Example.

A sequence database is shown in Fig. 1 (left). It contains four
sequences having the SIDs 1, 2, 3 and 4. Each single letter
represents an item. Items between curly brackets represent an
itemset. The first sequence <{a, b}, {c}, {f, g}, {g},
{e}>contains five itemsets. It indicates that items a and b

occurred at the same time, were followed by c, then f, g and
lastly e.

(a)

 International Journal of Computer Sciences and Engineering Vol.-2(10), PP(54-58) Oct 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 57

(b)

Figure.1 A sequence database (a) and some sequential patterns found (b)

The pseudocode of SPAM is shown below. SPAM take as
input a sequence database SDB and the minsup threshold.
SPAM first scans the input database SDB once to construct
the vertical representation of the database V (SDB) and the
set of frequent items F1. For each frequent item s ∈ F1,
SPAM calls the SEARCH procedure with <s>, F1, {e ∈

F1|e >lex s}, and minsup. The SEARCH procedure outputs

the pattern <{s}> and recursively explore candidate patterns
starting with the prefix <{s}>. The SEARCH procedure
takes as parameters a sequential pattern pat and two sets of
items to be appended to pat to generate candidates. The first
set Sn represents items to be appended to pat by s-extension.
The s-extension of a sequential pattern <I1, I2, ...Ih> with an
item x is defined as <I1, I2, ...Ih>, {x}>. The second set Si

represents items to be appended to pat by i-extension. The
i-extension of a sequential pattern <I1, I2, ...Ih> with an item

x is defined as <I1, I2, ...Ih ∪{x}>. For each candidate pat

generated by an extension, SPAM calculate its support to
determine if it is frequent. This is done by making a join
operation (see [3] for details) and counting the number of
sequences where the pattern appears. The IdList
representation used by SPAM is based on bitmaps to get
faster operations
[3]. If the pattern pat is frequent, it is then used in a recursive

call to SEARCH to generate patterns starting with the prefix
pat. Note that in the recursive call, only items that resulted in
a frequent pattern by extension of pat are considered for
extending pat. SPAM prunes the search space by not
extending infrequent patterns. This can be done due to the
property that an infrequent sequential pattern cannot be
extended to form a frequent pattern [1].

SPAM(SDB, minsup)

1. Scan SDB to create V(SDB) and identify F1, the

list of frequent items.

2. FOR each item s ∈ F1,

3. SEARCH(<s>, F1, {e > F1 | e >lex s}, minsup).

SEARCH(pat, Sn, In, minsup)
1. Output pattern pat.

2. Stemp := Itemp := Ø
3. FOR each item j ∈ Sn,
4. IF the s-extension of pat is frequent THEN Stemp :=

Stemp ∪ {{i}.
5. FOR each item j∈ Stemp,

6. SEARCH(the s-extension of pat with j, Stemp , {e ∈
Stemp | e >lex j}, minsup).
7. FOR each item j ∈ In,
8. IF the i-extension of pat is frequent THEN Itemp := Itemp
∪ {i}.

9. FOR each item j ∈ Itemp,
10. SEARCH(i-extension of pat with j, Stemp , {e ∈ Itemp
| e >lex j}, minsup).

III. ALGORITHMS RESULT EVALUATION

In this paper we study different algorithms for the data

mining the result evaluation of those algorithms are shown
below. This helps to evaluate all the studies algorithm and
compare them with each other.

Database
name

Item Avg.
Length

Time(s) Max
Pattern

(%)

Chess 76 37 20 20

Connect 130 43 40 10

Mushrooms 120 23 9 0.075

Gazelle 498 2.5 10 0.01

Table 1 Performance Evaluations of CHARM

Database
name

Item Avg.
Length

Time(s) Max
Pattern

(%)

Chess 75 37 8 1.49

Connect 129 43 283 25.51

Mushrooms 128 23 20 3.46

Gazelle 498 2.5 368 46.39

Table 2. Performance Evaluations of Top K rule

Database
name

Item Avg.
Length

Time(s) Max
Pattern

(%)

Chess 76 37 15 18.81

Connect 130 43 40 12.3

Mushrooms 120 23 60 0.59

Gazelle 498 2.5 80 24.08

Table 3 Performance Evaluations of CM SPAM

IV. CONCLUSION

This paper has attempted to review the three data mining
algorithms i.e. CHARM algorithm, K rule mining and CM
SPAM algorithms. We also see all the aspects of these three
algorithms. We compare the Performance of the all three
algorithms and study their results.We observe that the time
complexity of Charm algorithm is better as compare to Top

 International Journal of Computer Sciences and Engineering Vol.-2(10), PP(54-58) Oct 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 58

K rule and CM-Spam, While the maximum pattern matching
percentages is best for TopK rule.

ACKNOWLEDGMENT

Ms. Aruna J. Chamatkar is MCA from Rashtrasant
Tukdoji Maharaj Nagpur University, Nagpur. Currently
pursuing PhD from RTM Nagpur University under the

guidance of Dr. Pradeep K. Butey. Her research area is Data
Mining and Neural Network.

Dr. Pradeep K. Butey is research Supervisor for
Computer Science at RTM Nagpur university. He is the
Head Of the Department (Computer Science) at Kamla
Nehru Mahavidyalaya, Nagpur . His area of interest includes
Fuzzy Logic, Neural Network and Data Mining.

REFERENCES

[1] Neelamadhab Padhy, Dr. Pragnyaban Mishra, Rasmita

Panigrahi “The Survey of Data Mining Applications
And Feature Scope” at International Journal of
Computer Science, Engineering and Information

Technology (IJCSEIT), Vol.2, No.3, June 2012.

[2] Introduction to Data Mining and Knowledge Discovery,
Third Edition ISBN: 1-892095-02-5, Two Crows

Corporation, 10500 Falls Road, Potomac, MD 20854
(U.S.A.), 1999.

[3] Larose, D. T., “Discovering Knowledge in Data: An
Introduction to Data Mining”, ISBN 0-471-66657-2,
ohn Wiley & Sons, Inc, 2005.

[4] Dunham, M. H., Sridhar S., “Data Mining: Introductory
and Advanced Topics”, Pearson Education, New Delhi,
ISBN: 81-7758-785-4, 1st Edition, 2006

[5] M. J. Zaki and K. Gouda. Fast vertical mining using

Diffsets. Technical Report 01-1, Computer Science
Dept., Rensselaer Polytechnic Institute, March 2001.

[6] M. J. Zaki. Scalable algorithms for association mining.

IEEE Transactions on Knowledge and Data
Engineering, 12(3):372-390, May-June 2000.

[7] R. Agrawal, T. Imielminski and A. Swami, “Mining
Association Rules Between Sets of Items in Large
Databases,” Proc. ACM Intern. Conf. on Management

of Data, ACM Press, June 1993, pp. 207-216.
[8] P. Tzvetkov, X. Yan and J. Han, “TSP: Mining Top-k

Closed Sequential Patterns”, Knowledge and
Information Systems, vol. 7, no. 4, 2005, pp. 438-457.

[9] C. Kun Ta, J.-L. Huang and M.-S. Chen, “Mining Top-k
Frequent Patterns in the Presence of the Memory
Constraint,” VLDB Journal, vol. 17, no. 5, 2008, pp.
1321-1344.

[10] J. Wang, Y. Lu and P. Tzvetkov, “Mining Top-k
Frequent Closed Itemsets,” IEEE Trans. Knowledge and
Data Engineering, vol. 17, no. 5, 2005, pp. 652-664.

[11] A. Pietracaprina and F. Vandin, “Efficient Incremental
Mining of Top-k Frequent Closed Itemsets,” Proc.
Tenth. Intern. Conf. Discovery Science, Oct. 2004,
Springer, pp. 275-280.

[12] G. I. Webb and S. Zhang, “k-Optimal-Rule-Discovery,”
Data Mining and Knowledge Discovery, vol. 10, no. 1,
2005, pp. 39-79.

[13] G. I. Webb, “Filtered top-k association discovery,”
WIREs Data Mining and Knowledge Discovery, vol.1,

2011, pp. 183-192.
[14] Y. You, J. Zhang, Z. Yang and G. Liu, “Mining Top-k

Fault Tolerant Association Rules by Redundant Pattern
Disambiguation in Data Streams,” Proc. 2010 Intern.
Conf. Intelligent Computing and Cognitive Informatics,
March 2010, IEEE Press, pp. 470-473.

[15] Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of
sequential pattern mining algorithms. ACM Computing

Surveys 43(1), 1–41 (2010).
[16] Agrawal, R., Ramakrishnan, S.: Mining sequential

patterns. In: Proc. 11th Intern. Conf. Data Engineering,
pp. 3–14. IEEE (1995)

