

 © 2016, IJCSE All Rights Reserved 76

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-5 E-ISSN: 2347-2693

Analysis of Aspect Oriented Systems: Refactorings using AspectJ

Geeta Bagade (Mete)

1*
, Shashank Joshi

2

1*
Department of Computer Science,Yashwantrao Mohite College, Bharati Vidyapeeth University, Pune,India
2
 Department of Computer Engineering, Engineering College, Bharati Vidyapeeth University, Pune, India

Available online at: www.ijcseonline.org

Received: Apr/26/2016 Revised: May/07/2016 Accepted: May/19/2016 Published: May/31/2016

Abstract—Refactoring is one of the most important activity in software development. It is done to improve the design of the software,

to make the software easier and better to understand and to help us in writing programs faster. After the software is refactored, it is

important to note the behaviour of that software. In this paper, we propose refactorings that we can apply of Aspect Oriented

Programs. In the last paper some of the refactorings were introduced. Here we are introducing the results of the refactorings

introduced and the systems considered for Aspect Oriented Programming using Aspect. This research paper is in continuation with

the previous one. Initially we introduce the refactorings identified, then the Systems that are used for applying these refactoring are

mentioned. Then the tool is discussed and finally the analysis of the system is presented.

Keywords- Refactoring, Aspect Oriented Programming, AOP, Pointcut, Joinpoint, Refactoring Advice Aspect Oriented Programming,

Aspect Oriented Concerns, AspectJ, Concerns, Aspect, Aspect Mining

I. INTRODUCTION

In the previous paper, we had listed the refactorings that

we have identified. The refactorings identified were

1. Make the aspect unprivileged

2. Replace the pointcut name with its designator

3. Introduce the get and set pointcut , introduce before and

after advice

4. Remove the word abstract for the aspect

The above refactorings were applied on a sample code and

their results were analyzed. Here we are applying the above

refactorings on 10 systems that make use of AspectJ. Here we

first discuss about the systems that we have used. Later we

discuss about the tool that we have used for analyzing the

systems. And in the last section we present the analysis and

the conclusion.

II SYSTEMS USED

In this section we discuss the systems that have been

selected. We have selected 10 systems that use AspectJ.

These systems have been used because they have been used

extensively by other researchers for the various purposes in

the domain of AOP. Here we discuss in brief about each

system that has been considered

A. Banking Application (BA)
1
: This is a simple

system that provides the basic functionality of a

banking system like depositing money and

withdrawing money. An aspect is used to check

whether the requested operations like depositing

money and withdrawing money should be allowed

or not.

B. TracingAspect(TA)
2
: This system is provided by Xerox

Corporation. It contains classes like

1. Circle

2. Square

3. TwoDShape (Abstract class)

4. Trace

It contains one Aspect named TraceMyClasses which is

connecting the functions in the Trace class with the

constructors and methods in the Application class.It also

contains one class ExampleMain which contains the

entry point for the program execution i.e the main()

method.The code has been slightly modified by

changing the access specifier which was originally

protected in each class (Circle, Square and TwoDShape)

to private to test the effect of the refactoring mentioned

above

C. Figures_Shapes(FS)
3
: This project contains an interface

FigureElement which has two methods moveBy and

draw. The method moveBy moves a line or a point by x

and y co-ordinates. It has a class Point which

implements the interface FigureElement i.e. it provides

the code for the methods moveBy() and draw().It also

has a class Line which draws a line from Point p1 to

Point p2. It also moves a line using the method

moveBy(). There is the class Display. Aspects present in

this project are BoundPoint which sets the minimum and

maximum x and y co-ordinates.The aspect

BoundPointEnforcement extends the aspect BoundPoint

and enforces the x and y coordinate bounds. The aspect

BoundPointPreCondition which has the advice “before”

that checks the value of x co-ordinate and y co-

ordinate.The aspect BoundPointPostCondition which

has the advice “after” that again checks the value of x

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(76-80) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 77

co-ordinate and y co-ordinat.Other aspects are

DisplayUpdating, FactoryCheck, PointCaching and

SetterCheck. To test the refactoring, slight changes have

been made to the original code.

D. Point_Introduction(PI)
4
: This system is made

available by Xerox Corporation.This project has a

class Point class with data members as x , y

coordinates, theta, rho and boolean variables to

indicate whether the Point is polar or rectangular.

The Point class has appropriate setter and getter

methods. Here there are three aspects

CloneablePoint, ComparablePoint and

HashablePoint which are used to clone the point,

compare it and hash it.

E. Subject Observer Protocol(SOP)
5
: This system is

also made available by Xerox Corporation. It has

two interfaces Subject and Observer. It has three

classes i.e. Button, ColorLabel, Display and one

main class Demo. It also has two aspects

SubjectObserverProtocol and

SubjectObserverProtocolImpl. The system consists

of a colored label. The color of the label changes

from the given set of colours. It also displays a

number that tells the number of cycles it has gone

through. There is a button that is serving as an

Action Item which records when it is being clicked.

So using these two objects, a Subject /Observer

relationship is designed and implemented where the

labels are the observers and the buttons are the

subjects

F. Game of Tetris(GT)
6:

 This system has been done

by Gustav Evertsson It was developed to test and

observe how to use AspectJ by refactoring the

existing Tetris program. This system is basically a

game, where a block is dropped and the player is

supposed to make a line out of the dropped blocks.

The game comes to an end when the block reaches

the top of the game board. The game system is

divided into three sections. The first section deals

with the rules of the game. The second section deals

with the logic for all data manipulation and the third

section deals with the GUI of the game. The code

has been modified to illustrate the refactoring. The

author has created the following aspects

1. Design checker: to check that the layer

2. Game Info– A Panel for showing info

about the game

3. Menu– Adds a menu

4. Counter– Counts the number of deleted

lines

5. Level– It makes use of counter to check

how many lines have been deleted

6. New Blocks– Used to add two new types

of blocks to the game.

7. Next Block–Shows what the next block is when

the current block is dropped

G. RacerAJ(RJ)
7
: This system is developed by Eric

Bodden. It containes a set of aspects which are used for

detecting errors that arise during concurrency control in

Java applications and AspectJ applications. This system

implements the Racer algorithm. It is used for detecting

data races in Java and AspectJ programs. This project

has implemented 3 novel pointcuts which are provided

as an extension to the AspectBench Compiler. The

pointcuts are

1. lock() : matches whenever one enters a

synchronized block or synchronized method

2. unlock() : matches whenever one exits a

synchronized block or synchronized method

3. maybeShared() : is a “semantic pointcut,”

matches any field access (set or get)

H. Telecom Application (TAp)
8
: This system simulates

the telephone system. In this the customer makes,

accepts, merges or hangs up on a local call or a long

distance call. The architecture of this system is divided

into three parts. The first part provides the basic

functionality of the call and connection. It also provides

the functionality to simulate a customer. The second part

simulates the timing feature. Here a timer is used with

each connection by using aspects. Aspects also manage

the total time per customer. The third part of the system

simulates the bill given to the customer. The billing

depends on the timing. So the billing aspect is built upon

the timing aspect. The system has been simulated with

three different configurations. They are BasicSimulation,

TimingSimulation and BillingSimulation.

I. Spacewar Game
9
: This system implements the video

game SpaceWar. This comes along with AJDT. This

games helps in understanding how the features of

AspectJ should be used. This game was developed in

1962 and it is one of the first video games created. It has

two spaceships “the needle” and “the wedge” which are

engaged in fighting like a dog. Both the ships are

controlled by a player which is a human. Also each ship

has limited amount of fuel and a limited number of

torpedoes. Ships get destroyed when they bump over a

torpedo or star.
J. ToyExample(TE)

10
: This system consists of three

classes BaseClass and Main_LayeredAspects and Driver

class. It consists of three aspects: Quote, QuoteDynamic

and QuoteStatic. Quote aspect is abstract whereas

QuoteStatic and QuoteDynamic are abstract and are

extended from the Quote aspect.The Driver class loads a

.properties file and checks whether the property is

activated or not. The BaseClass is used for validating the

text.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(76-80) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 78

III TOOL USED

In this section we discuss the tool that has been used for

analyzing the systems before and after refactoring is done.

Here we use the tool called AJATO
11

 which is an assessment

tool. It provides the quantitative analysis of software

artifacts. It helps in computing the AO metrics and also

supports the use of heuristics

The tool provides following metrics

1. Separation of Concerns

2. Coupling

3. Size

In case of Separation of Concerns it provides Number of

Attributes per Concern (NOAconcern), Concern Diffusion

over Operations, Number of Operations per Concern

(NOOconcern) and Concern Diffusion over Components

(CDC).

With respect to coupling it provides Number of Children

(NC), Depth of Inheritance Tree (DIT).

With respect to Size it provides Number of Statements

(NS), Number of Operations (NO), Number of Attributes

(NA), Vocabulary Size (VS), Weighted Operations per

Component (WOC) and Lines of Code (LC).

The Architecture Model of AJATO is as shown

Source: http://homepages.dcc.ufmg.br/~figueiredo/ajato/

Figure1

The current systems have been analyzed in terms of

Coupling and Size. Below, we discuss the meaning of the

terms and its impact on the code.

Coupling Metrics

1. Depth of Inheritance Tree (DIT): Inheritance is also

referred as generalization. It is an important concept and

should be used very carefully. A class or an aspect that

is too deep in the inheritance tree is very complex to

develop, maintain as well as test. Therefore it is very

important to control this depth. So this metric provides

the location of the class or the aspect in the inheritance

tree. It normal range should be between 0 and 4. A value

which is greater than 4 will bargain encapsulation and

will increase the complexity of the system

2. Number of Children (NC): It indicates the number of

sub classes derived from the super classes. It is used to

measure the scope i.e breadth of the class hierarchy. DIT

measures depth. Depth is much better than breadth

because depth is used for promoting the reuse of the

methods. So NOC and DIT are very much related with

each other. A high value of NOC indicates too much use

of the base class. So base class requires extensive

testing. It also indicates irregular or improper abstraction

of the super class. High NOC indicates high reuse. A

class or aspect with high NOC indicates that there is

complexity at the top of the class hierarchy. This is an

indication of poor design and so redesign is suggested.

The normal range
12

 for NOC is between 1 and 4

Size Metrics
1. Vocabulary Size (VS): It is the number if aspects and

class declarations in a system. So each class and each

aspect is counted. The class can be of different types like

inner class, sub class, super class as well as static and

abstract class. Also aspects can be of various types like

default aspect, inner aspect and abstract aspect.

1. https://github.com/101companies/101repo/tree/master/languages/As

pectJ/aspectJSamples/accounts

2. https://github.com/101companies/101repo/tree/master/languages/As

pectJ/aspectJSamples/tracing

3. https://github.com/101companies/101repo/tree/master/languages/As

pectJ/aspectJSamples/figures

4. https://github.com/101companies/101repo/tree/master/languages/As

pectJ/aspectJSamples/introduction

5. https://github.com/101companies/101repo/tree/master/languages/As

pectJ/aspectJSamples/observer

6. http://www.guzzzt.com/coding/aspecttetris.shtml

7. https://github.com/ericbodden/cocoaj/tree/master/RacerAJ/src/ca/mc

gill/sable/racer

8. https://eclipse.org/aspectj/doc/released/progguide/printable.html#a-

simple-telecom-simulation

9. https://github.com/101companies/101repo/tree/master/languages/As

pectJ/aspectJSamples/spacewar

10. https://github.com/rcaa/ToyExample-

LayeredAspects/tree/master/src/ufpe/br/feature

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(76-80) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 79

2. Weighted Operations per Component (WOC): It is the

count of the number of arguments of the advices and

methods in a system.

3. Number of Attributes (NA): It is the count of the number

of fields in the class and aspect.

4. Number of Operations (NO): It is the count of the

number of methods declared in the classes as well as

aspects present in the system. It does not count abstract

methods or constructors present in the aspect or class.

5. Number of Statements (NS): It counts the number of

statements in a method. A statement always ends with a

“semicolon”. It counts all types of statements like

constructors, for, return, if, switch etc.

6. Lines of Code (LC): It counts the number of lines in the

source code of the class or aspect. It does not count

single line, multiple line comments or blank lines and

java docs statements.

Other Metrics

1. Time taken for Execution (TE): It is the time taken to

execute the system. It is calculated as the difference

between the start time and the end time. An average of 6

runs of the systems is considered as the execution time.

IV ANALYSIS AND RESULTS

1. Make the aspect unprivileged

Figure2: Refactoring 1 Comparison

Figure3: Refactoring 1 Comparison Chart

2. Replace the pointcut name with its designator

Figure4: Refactoring 2 Comparison

Figure5: Refactoring 2 Comparison Chart

3. Introduce the get and set pointcut , introduce before

and after advice

Figure6: Refactoring 3 Comparison

Figure7: Refactoring 3 Comparison Chart

11. http://support.objecteering.com/objecteering6.1/help/us/metrics/

metrics_in_detail/number_of_children.html

12. Eduardo Magno Lages Figueiredo [emagno inf.puc-rio.br],

Claudio Nogueira Sant'Anna [claudio les.inf.puc-rio.br],

Alessandro Fabricio Garcia [garciaa comp.lancs.ac.uk], Carlos

José Pereira de Lucena [lucena inf.puc-rio.br]

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(76-80) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 80

4. Remove the word abstract for the aspect

Figure8: Refactoring 4 Comparison

Figure9: Refactoring 4 Comparison Chart

IV CONCLUSIONS

As seen in the result, for the first refactoring Vocabulary

Size, Number of Attributes remains same. But there is a

change in the Number of Operations, Weighted Operations

per component, Number of Statements, Lines of Code and

Execution time. So this refactoring reduces the time taken for

execution even though the number of lines of code increases.

We can see the same pattern in the other three refactorings.

Therefore we can conclude that if the above refactorings are

applied to the code, the system will execute faster.

REFERENCES

[1] A. Rani and H. Kaur, "Refactoring Methods and Tools",

International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 2, no. 12, pp. 256-

260, 2012.

[2] Puneet Jai Kaur, Sarita Rani, “Impact of Aspect Oriented

Programming on Software Maintainability - A

Descriptive Study, University Institute of Engineering and

Technology, Panjab University, Sector 25, Chandigarh,

International Journal of Emerging Technologies in

Computational and Applied Sciences (IJETCAS), IJETCAS

14-340; 2014

[3] Pradeep Kumar Singh, Om Prakash Sangwan, Amar Pal

Singh Amrendra Pratap, “An Assessment of Software

Testability using Fuzzy Logic Technique for Aspect-Oriented

Software”, I.J. Information Technology and Computer

Science, 2015, 03

[4] Freddy Munoz,Benoit Baudry, Romain Delamare, Yves

Le Traon “Inquiring the Usageof Aspect-Oriented

Programming: An Empirical Study”

[5] Tom Mens, Tom Tourw´e “A Survey of Software

Refactoring”, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. XX, NO. Y, MONTH 2004

[6] Eduardo Figueiredo,Alessandro Garcia, Carlos Lucena,

AJATO: an AspectJ Assessment Tool

[7] Muhammad Sarmad Alia, Muhammad Ali Babar,,

Lianping Chen, Klaas-Jan Stol, Information and Software

Technology, 52 , 871–887(2010)

[8] Terry Hon, A Simple, Modern AspectJ Compiler

[9] Sven Apel, and Don Batory,” How AspectJ is Used:”

An Analysis of Eleven AspectJ Programs”, Technical Report,

Number MIP-0801, Department of Informatics and

Mathematics,University of Passau, Germany,April 2008

[10] Khine Zar Ne Winn,”Quantifying and Validation of

Changeability and Extensibility for Aspect-Oriented

Software”, International Conference on Advances in

Engineering and Technology (ICAET'2014) March 29-30,

2014 Singapore

[11] Piyush Chandi,” A Survey : Code Optimization using

Refactoring”, International Journal on Computer Science and

Engineering (IJCSE), Vol. 5 No. 05, May 2013

Authors Profile

Geeta Bagade(Mete), a Master in computer Science from the
University of Pune and currently pursuing her Ph.D in Computer
Science from Bharati Vidyapeeth,Pune has more than 12 years of
experience in IT training. She possesses good technical skills with
respect to programming languages as well as databases.

Dr. Shashank Joshi, is a B.E. in Electronics and
Telecommunication from Govt. College of Engineering, Pune in
1988. He also completed the M.E. and Ph. D. Degree in Computer
Engineering from Bharati Vidyapeeth Deemed University Pune. He
is currently working as the Professor in Computer Engineering
Department, Bharati Vidyapeeth Deemed University, College of
Engineering, Pune. His research interests include software
engineering. Presently he is engaged in SDLC and secure software
development methodologies. He is a passionate professor with
overal experience of more than 20 yrs.

