
 © 2014, IJCSE All Rights Reserved 50

 International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss and Engineeringand Engineeringand Engineeringand Engineering Open Access

Research Paper Volume-2, Issue-9 E-ISSN: 2347-2693

Intelligent Anti-Theft Finding Scheme Towards iTrust Establishment in

Delay Tolerant Networks Using VANET

Bhogapathi Swetha
1*

, D. Bulla Rao
2
 and P. Nageswara Rao

3

1*,2,3
Department Of CSE, Swetha Institute of Technology and Science: Tirupathi

www.ijcaonline.org

Received: Aug/17/2014 Revised: Aug/26/2014 Accepted: Sep/15/2014 Published: Sep/30/2014

Abstract— Malicious and selfish behaviors represent a serious threat against routing in Delay/Disruption Tolerant Networks

(DTNs). Due to the unique network characteristics, designing a misbehavior detection scheme in DTN is regarded as a great

challenge. In this paper, we propose iTrust, a probabilistic misbehavior detection scheme, for secure DTN routing towards

efficient trust establishment. The basic idea of iTrust is introducing a periodically available Trusted Authority (TA) to judge the

node’s behavior based on the collected routing evidences and probabilistically checking. A new VANET-based smart parking

scheme (SPARK) for large parking lots provide three convenient services for drivers: 1) real-time parking navigation; 2)

intelligent anti-theft protection; and 3) friendly parking information dissemination. TA could ensure the security of DTN routing

at a reduced cost. To further improve the efficiency of the proposed scheme, we correlate detection probability with a node’s

reputation, which allows a dynamic detection probability determined by the trust of the users. The extensive analysis and

simulation results show that the proposed scheme substantiates the effectiveness and efficiency of the proposed scheme.

Keywords— VANET ,ITRUSTED , DTNS.

I. INTRODUCTION

 Delay tolerant networks (DTNs), such as sensor networks

with scheduled intermittent connectivity, vehicular DTNs that

disseminate location-dependent information (e.g., local ads,

traffic reports, parking information) [1], which makes routing

quite different from other wireless networks. For example,

since an end-to-end connection is hard to setup, store-carry-

and forward is used to deliver the packets to the destination.

Although many routing algorithms [2]–[3] have been

proposed to increase data delivery reliability.

Pocket-switched networks that allow humans to communicate

without network infrastructure, are highly partitioned

networks that may suffer from frequent dis-connectivity. In

DTNs, the in-transit messages, also named bundles, can be

sent over an existing link and buffered at the next hop until the

next link in the path appears. In DTNs, a node could

misbehave by dropping packets intentionally even when it has

the capability to forward the data. As a result, in civilian

DTNs such as PeopleNet and Pocket Switched Network [4], a

node may not be willing to forward packets for others.

 To capture user selfishness in a more realistic

manner, we have two observations from the social

perspective. First, a selfish user is usually willing to help

others with whom he has social ties (e.g., friends, coworkers,

roommates). Routing misbehavior can be caused by selfish (or

rational) nodes that try to maximize their own benefits by

enjoying the services provided by DTN while refusing to

forward the bundles for others, or malicious nodes that drop

packets or modifying the packets to launch attacks.

 Social selfishness will affect node behaviors.

As a forwarding service provider, a node will not forward

packets received from those with whom it has no social ties,

and it gives preference to packets received from nodes with

stronger ties when the resource is limited. Thus, a DTN

routing algorithm. should take the social selfishness into

consideration.

II. PRELIMINARY

2.1 System Model

In this paper, we adopt the system model similar to [5]. We

consider a normal DTN consisted of mobile devices owned by

individual users. Each node i is assumed to have a unique ID

Ni and a corresponding public/private key pair. We assume

that each node must pay a deposit C before it joins the

network, and the deposit will be paid back after the node

leaves if there is no misbehavior activity of the node. Similar

to [6], we assume that a periodically available TA exists so

that it could take the responsibility of misbehavior detection in

DTN. For a specific detection target Ni , TA will request

Ni’s forwarding history in the global network.

 Therefore, each node will submit its

collected Ni’s forwarding history to TA via two possible

approaches. In a pure peer-to-peer DTN, the forwarding

history could be sent to some special network components

(e.g., roadside unit (RSU) in vehicular DTNs or judge nodes

in [7]) via DTN transmission. In some hybrid DTN network

environment, the transmission between TA and each node

could be also performed in a direct transmission manner (e.g.,

WIMAX or cellular networks [8]). We argue that since the

misbehavior detection is performed periodically, the message
Corresponding Author: Bhogapathi Swetha

 International Journal of Computer Sciences and Engineering Vol.-2(9), PP(50-56) Sep 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 51

transmission could be performed in a batch model, which

could further reduce the transmission overhead.

2.2 Architecture

Fig. 1. SSAR overview where node N meets node M. The dashed rectangles

enclose the information exchanged in step 2 and step 3

Figure 1 shows the architecture of SSAR, which has the

following four components.

Packet priority manager: It calculates a priority for each

buffered packet based on the willingness between nodes that

the packet has traversed. This priority of a packet measures

the social importance of the packet to the node.

Buffer manager: It manages buffers based on packet priority:

(i) packets with priority 0 will not be buffered; (ii) when

buffer overflows, packets of low priority are dropped first.

That is, a new incoming packet can preempt the buffer

occupied by lower-priority packets. This policy exactly

follows the philosophy of “design for user”.

Delivery probability estimator: It estimates a node’s “delivery

probability” of a packet, which is used to quantify the node’s

forwarding capability for that packet. A node forwards the

packet to the neighbor with a higher delivery probability.

Traditionally, the quality of a relay is measured solely based

on its contact opportunity to the destination node. SSAR

measures the delivery probability of a node based on both of

its contact opportunity to the destination and its willingness to

forward.

It is straightforward that a node with a low contact opportunity

should not be a relay. Interestingly, a node with a high contact

opportunity but low willingness should not be a relay either .

Suppose S has a packet m1 to send to D, and it successively

meets A, C, and B. If only contact opportunity is considered,

it will forward m1 to A. Unfortunately, A will drop m1 since

it is unwilling to forward for S(the edge weight is0). SSAR

will avoid such forwarding. Though C is willing to forward

m1, its willingness is so low that m1 may suffer high risk of

being dropped, so SSAR will avoid such forwarding. As a

result, B is the optimal forwarder for m1in this scenario, since

it has high willingness to forward and a high contact

opportunity. Forwarding set manager After a node determines

a set of packets that should be forwarded to a better relay,

existing routing protocols greedily transmit them no matter the

receiver has enough buffers to hold these packets or not [9].

Obviously, bandwidth will be wasted if the transmitted

packets are dropped due to buffer overflow. To address this

issue, the forwarding set manager decides which packets to

transmit by solving an MKPAR formulation. It considers the

buffer constraint and transmits the packets that are most

effective for social selfishness and routing performance.

2.3 Design Requirements

The design requirements include

•Distributed: We require that a network authority responsible

for the administration of the network is only required to be

periodically available and consequently incapable of

monitoring the operational minutiae of the network.

• Robust: We require a misbehavior detection scheme that

could tolerate various forwarding failures caused by various

network environments.

• Scalability: We require a scheme that works independent of

the size and density of the network

2.4 Literature survey

Literature survey is the most important step in software

development process. Before developing the tool it is

necessary to determine the time factor, economy n company

strength. Once these things are satisfied, ten next steps are to

determine which operating system and language can be used

for developing the tool. Once the programmers start building

the tool the programmers need lot of external support. This

support can be obtained from senior programmers, from book

or from websites. Before building the system the above

consideration are taken into account for developing the

proposed system.

III. NEW IMPLEMENTATION

String transformation has many applications in data mining,

natural language processing, information retrieval, and

bioinformatics. String transformation has been studied in

different specific tasks such as database record matching,

spelling error correction, query reformulation and synonym

mining. The major difference between our work and the

existing work is that we focus on enhancement of both

accuracy and efficiency of string transformation.

3.1 Registration:

An Author(Owner) or User have to register first,then only

he/she has to access the data base. In that any of the above

mentioned person have to login,they should login by giving

their emailid and password. Then if an user wants to check the

spelling, they can check and correct it automatically.

 String Transformation: Here we are techniques for

searching the String 1)String Generation,2)String

Transformation.

 International Journal of Computer Sciences and Engineering Vol.-2(9), PP(50-56) Sep 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 52

String Generation: It means we have generated 50,000

Strings in alphabetical order.From a to z like a,aa,…..z.

String Transformation: It means we have given the user

with the benefit of String Generation as well as String alias .It

will be useful for the user for example if the end user have

typed “TKDE” its equal to “Transactions on Knowledge and

Data Engineering”.

String mining: The User has to download the string with its

meanings also He/She can download its substrings and its

reverse etc.Also check the given string which is present in the

bunch of strings ,if its present the result will be “String

Found” otherwise ”String NotFound”.

In particular, TA judges if node Nj is a misbehavior or not by

triggering the Algorithm 1. In this algorithm, we introduce

BasicDetection, which takes j,Stask,Sforward, [t1,t2],R,Das

well as the routing requirements of a specific routing protocol

R,Das the input, and output the detection.

Algorithm 1 The Basic misbehavior detection algorithm

1:procedure BASIC

DETECTION((j,Stask,Sforward,[t1,t2],R,D))

 2: for Each m∈ Stask do

 3: if m ∉ Sforward and R!=0 then

 4: return 1

 5: else if m∈Sforward and Nk(m) ⊄ R then

 6: return 1

 7:else if m ∈ Sforward and Nk(m) ⊂ R

and | Nk(m)|< D then

 8: return 1

 9: end if

 10: end for

 11: return 0

 12: end procedure

result “1” to indicate that the target node is a misbehavior or

“0” to indicate that it is an honest node. The proposed

algorithm itself incurs a low checking overhead. However, to

prevent malicious users from providing fake delegation

/forwarding /contact evidences, TA should check the

authenticity of each evidence by verifying the corresponding

signatures, which introduce a high transmission and signature

verification overhead. We will give a detailed cost analysis in

Section 4.2. In the following section, inspired by the

inspection game, we will propose a probabilistic misbehavior

detection scheme to reduce the detection overhead without

compromising the detection performance.

3.2 Forwarding Set Optimization

In this subsection, we solve the following problem: suppose a

node M contacts N, and M has determined a candidate packet

set C for which N has higher delivery probabilities. Since N’s

buffer may be inadequate to accept all packets in C, and the

contact duration may be too short to transmit all these packets,

how to determine a subset of C to transmit and in what

order?We follow two principles. First,M will not forward a

packet to N if N does not have sufficient buffers for that

packet. According to the buffer management rule, N’s

available buffer size Lm for m is:

Lm = L0 + ∑ lk ……….1

 {k/pk<p}

where L0 denotes N’s empty buffer size, {k|pk < p} denotes

the packets in N’s buffer whose priority is smaller than that of

m (p), and lk denotes the size of packet k. Second, M tries to

maximize its selfish gain through this contact, which is

defined as follows.

Definition 1 (Selfish Gain) The selfish gain g that M achieves

by forwarding m to N is the product of m’s priority p in M and

the increment of delivery probability, i.e., g =p ・ ∆Pdelivery.

Both factors in the definition are related to selfishness. P

means how socially important the packet is. The larger p

is, the more selfishness is gained. ∆Pdelivery means how

much this forwarding can increase the packet’s probability to

be delivered. The larger ∆Pdelivery is, the more help is

provided. So their product is a natural representation of the

gained selfishness. Suppose all the packets in C are sorted by

priority in the increasing order, then we can simply use i to

denote the ith packet. Let Xi denote if packet i is selected by

the to be transmitted subset (Xi = 1) or not (Xi = 0). According

to the above two principles, the problem can be formulated as:

max ∑ gi Xi s.t. ∀i ∑ Xjlj ≤ Li ..2

 i∈ C j≤ i

Next we convert it into an MKPAR formulation [10], where

each item can only be assigned to a subset of the knapsacks.

Suppose the original buffer is divided into |C| + 1 knapsacks

such that the first knapsack has size S1 = L1, the jth (j ∈{2, ...,

|C|}) one has size Sj = Lj −Lj−1, and the (|C|+1)th one

consists of buffers that cannot be preempted by any packet in

C. Then packet i can only be packed into knapsacks indexed

smaller than or equal to i. Let Xij denote if packet i is packed

into knapsack j (Xij = 1) or not (Xij = 0), then Xij = 0 when i <

j. Eq. 2 can be rewritten as an MKPAR:

max

||c

∑
||c

∑ giXij

 i=1 j=1

s.t. i∀ ∑Xij ≤ 1, j∀ ∑Xijli ≤ Sj ...3

 j i

Since a simpler variation of MKPAR has been proved by

Dawande et al. [10] to be NP-hard, MKPAR is also NP-hard.

Thus, we give a greedy algorithm, which ranks the packets in

the decreasing order of selfish gain weighted by packet size,

and packs them one by one until no more packets can be

packed.

 International Journal of Computer Sciences and Engineering Vol.-2(9), PP(50-56) Sep 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 53

IV. PERFORMANCE EVALUATIONS

 In this section, we evaluate the performance of SSAR and

compare it to other existing routing algorithms.

4.1 Experiment Setup
The trace does not have the accurate social relationship

information among participants, we need to construct a

weighted directed social graph upon them. To better study

SSAR, we evaluate it on two types of social graphs. The first

type of social graph is probabilistically contact dependent. It

can be built based on the following heuristic, which has been

verified by many sociology studies [11]. The stronger tie two

individuals have, the more likely they contact frequently.

Individuals with more social ties are more likely to meet other

people. Let f∗ denote the overall contact frequency of the

whole trace, fN denote node N’s overall contact frequency,

and fNM denote the contact frequency between N and M. The

graph is constructed in four steps:

1) We generate power-law distributed node degrees based on

several measurement studies [12].

2) We repeatedly assign those degrees to nodes in the trace,

i.e., assign the largest degree to a node in such a way that node

N’s probability to be selected is fN/f∗, and repeat this for the

remaining degrees and nodes.

3) We generate weights for the social ties (edges) of each

node. The best empirical data we can find about social tie

strength is from one recent study in which participants rate

their friendship nearly uniformly between 0 and 1 [13]. Thus,

we generate weights for each node’s social ties that are

uniformly distributed within [0,1].

4) For each node N, we connect its ties to other nodes. We

connect the strongest tie to another node in a way that node

M’s probability to be connected is fNM/fN, and repeat this for

the other ties and not-connected nodes. In the end, for any

ordered node pair NM that has not been connected yet, the

weight of edge NM is set 0.

The second type is random social graph that is also

constructed in four steps. The first and third steps are the

same, but in the second and fourth steps we assign degrees to

random nodes, assign weights to random social ties, and

connect social ties to random nodes. One important feature of

a social network is the average number of social ties per node;

i.e., the number of nodes with a social tie strength larger than

0. In some networks, each node only has a few social ties;

while in others, each node has many social ties. To generate

social graphs with different average numbers of social ties per

node, we fix the power law coefficient at 1.76 [12] when

generating node degrees, but change the minimum acceptable

degree.

4.2 Routing Algorithms and Metrics

1) Routing Algorithms: We compare SSAR with two other

benchmark algorithms, PROPHET [2] and SimBet [3].

PROPHET is a standard non-oblivious benchmark that has

been used to compare against several previous works [14]. It

calculates a metric, delivery predictability, based on contact

histories, and relays a packet to a node with higher delivery

predictability. We use the same parameters as in [2], and age

the delivery predictability upon every contact as done in [14].

SimBet has also been used as a benchmark in several works

[15]. It calculates a simbet metric using two social measures

(similarity and betweenness). A packet is forwarded to a node

if that node has higher simbet metric than the current one. We

use the same parameters as in [3]. Since the original

algorithms do not define the order of packets to be transmitted

during a contact, we adopt the transmission order used in

RAPID [9]. Because this order has been shown to be the most

effective, we believe such refinement does not favor SSAR in

comparison. Since the original algorithm either assumes

infinite buffer (SimBet) or assumes finite buffer but does not

specify the packet dropping policy (PROPHET), we apply

three policies (drop-tail, random drop, and minimum-utility-

drop-first) in simulation, and only present the results of the

best policy here, i.e., minimum utility- drop-first. Since it is

impossible to traverse all dropping policies and choose the

optimal one, we tried our best to impose the minimum

influence on the original algorithms. PROPHET and SimBet

are designed without considering social selfishness. For fair

comparison, we modified them to be selfishness-aware. That

is, nodes do not forward packets to others who are not willing

to forward for them, and avoid immediate droppings caused

by selfishness. However, when nodes forward packets to

others who are willing to forward for them, they still follow

the aforementioned transmission order and buffer policy. To

show the effect of such selfishness awareness, we also include

the basic PROPHET in our simulations. For convenience, we

label the selfishness-aware PROPHET PROPHET-1, and label

the basic one PROPHET-2.

2) Metrics: We use the following metrics to evaluate these

algorithms: packet delivery ratio, the total number of

transmissions, and selfishness satisfaction (SS). Packet

delivery ratio is defined as the proportion of packets that are

delivered to their destinations out of the total unique packets

generated. The total number of transmissions can be used as a

cost factor [3], and fewer transmissions mean lower cost. SS is

defined as the ratio of the average priority of all forwarded or

delivered packets over the average priority of all dropped

packets. SS reflects how much users are satisfied with the

network, because a larger SS indicates more important

messages are served. SSAR, PROPHET, and SimBet are

expected to have similar cost since all of them have only one

replica of a packet.

V. THE ADVANCED ITRUST:A PROBABILISTIC

MISBEHAVIOR DETECTION SCHEME

IN DTNS

We start from Algorithm 2, which shows the details of the

proposed probabilistic misbehavior detection scheme. For a

particular node i, TA will launch an investigation at the

 International Journal of Computer Sciences and Engineering Vol.-2(9), PP(50-56) Sep 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 54

probability of pb. If i could pass the investigation by

providing the corresponding evidences, TA will pay node i a

compensation w; otherwise, I will receive a punishment

C(lose its deposit). In the next subsection, we will model the

above described algorithm as an Inspection Game. And we

will demonstrate that, by setting an appropriate detection

probability threshold, we could achieve a lower detection

overhead and still stimulate the nodes to forward the packets

for other node.

Algorithm 2 the proposed probabilistic misbehaviour

Detection algorithm

1:initialize the number of nodes n

2:for i ← 1 to n do

3:Generate a random number mi from 0 to 10
n
-1

4:if mi/10
n
 < pb then

5:ask all the nodes (including node i) to provide

 evidence about node i

6:if BasicDetection(i ,Stask, Sforward,[t1,t2],R,D)

 then

7: give a punishment C to node i

8:else

9: pay node i the compensation w

10: end if

11:else

12: pay node I the compensation w

13: end if

14:end for

The Reduction of Misbehavior Detection Cost by

Probabilistic Verification
In this section, we give a formal analysis on the misbehaviour

detection cost incurred by evidence transmission and

verification. We model the movements and contacts as a

stochastic process in DTNs, and the time interval t between

two successive contacts of node Ni and Nj follows the

exponential

distribution [17]:

p{≤ x} = 1-
xtj

e
λ−

,x ∈[0, ∞]…..4

where λij is the contact rate between Ni and Nj , the expected

contact interval between Ni and Nj is E[t] = 1 λij. We further

denote Costtransmission as the evidences transmission cost

and Costverification as the evidence signature verification

cost for any contact. The below Theorem 2 gives a detailed

analysis on the cost incurred by iTrust.

Theorem 2: Given that pb is the detection probability, ¯ λ is the

mean value of all the λij , T is the inspection period, N is the

number of nodes, Costtransmission and Costverification are

the evidence transmission cost and evidence signature

verification cost for a contact, the misbehavior detection cost

in the whole network could be estimated as

).
2

*(||
2

1
onverificationtransmissib CostCostNTp +λ

 ….5

Proof: Given the above mentioned parameters, we could

obtain the number of contacts |H| as

|H| =
2

1 ∑∑
≠iji

2||

2

11
/ NTT

ij

λ
λ

≈

 ..6

If the detection probability is pb, the expectation of the

transmission and verification cost for these contact evidences

will be

E = pb |H| =
2

1
pb)*(|| 2

veficationontransmissi CostCostNT
+

λ

…..7

Equation 6 shows that between two time slots, the number of

the contacts among |N| nodes is in line with the time T and the

square of the number of the nodes. Then the cost of

misbehavior detection (including evidence transmission and

verification cost) is linear to the detection probability pb.

From Theorem 2, it is observed that the misbehavior detection

cost could be significantly reduced if choosing an appropriate

detection probability without compromising the security level.

In the experiment section, we will show that a detection

probability of 10% is efficient enough for misbehavior

detection, which means the cost of misbehavior detection will

be reduced to 10%, which will save a lot of resource of the TA

and the network.

Exploiting Reputation System to Further Improve the

Performance of iTrust

In the previous section, we have shown that the basic iTrust

could assure the security of DTN routings at the reduced

detection cost. However, the basic scheme assumes the same

detection probability for each node, which may not be

desirable in practice. Intuitively, an honest node could be

detected with a low detection probability to further reduce the

cost while a misbehaving node should be detected with a

higher detection probability to prevent its future misbehavior.

Therefore, in this section, we could combine iTrust with a

reputation system which correlates the detection probability

with nodes’ reputation. The reputation system of iTrust could

update node’s reputation r based on the previous round of

detection result, and, thereafter, the reputation of this node

could be used to determine its inspection probability p. We

define the inspection probability p to be the inverse function

of reputation r. Note that, p must not be higher than the bound

g w+C to assure the network security level, which has been

discussed before. Further, it is obvious that p cannot be larger

than 1, which is the upper bound of detection probability. If a

node’s p is 1, it means this node has been labeled as a

malicious one and thus should be detected for all the time.

What’s more important, a node with a lower reputation will

lead to a higher inspection probability as well as a decrease of

its expected payoff πw.

VI. RESULT

 International Journal of Computer Sciences and Engineering Vol.-2(9), PP(50-56) Sep 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 55

1) Performance and Cost:The Effects of TTLWe change the

packet TTL from 0 to 125 days to see its effects on the packet

delivery ratio and the cost. Each node has 25 social ties.

Figure 2(a) shows the packet delivery ratio under the contact-

dependent social graph. As the TTL increases, all algorithms

can deliver more packets to the destinations. However, the

delivery ratios will not increase after the TTL reaches a

certain value, e.g., 25 days in SimBet and 50 days for the

other three algorithms. This is because, after the TTL reaches

some value, the forwarding capacity of the network becomes

the performance bottleneck. Among all algorithms, SSAR has

the highest packet delivery ratio

Fig. 2. Comparison of performance and cost. For (e), the packet TTL

is 100 days. (a)(b) Results under the contact-dependent social graph.

(c)(d) Results under different workloads on average.

Figure 2(b) shows the cost under the contact-dependent social

graph. As the TTL increases, all algorithms have more

transmissions, because packets stay longer in the network and

have more opportunities to be transmitted. The total number

of transmissions does not increase too much after the TTL

reaches some value (about 75 days), when the number of

transmissions is limited by the contact opportunities of the

trace. Among the algorithms, SimBet has the most number of

transmissions, which is about 60% more than that SSAR and

150% more than PROPHET-1 and PROPHET-2.

The Effects of Workload To evaluate the performance of

SSAR under higher workloads, we change the packet

generation rate from 1 packet per node per day to 3 packets

per node per day. Each node on average has 25 social ties.

Figure 2(c) and Figure 2(d) show the results. When the

workload increases, all algorithms have lower packet delivery

ratios and more transmissions. However, they change at

different rates, especially SSAR and PROPHET-1. When the

packet generation rate is 1 packet per node per day, SSAR

delivers 40% more packets than PROPHET-1 with 60% more

transmissions. When the rate increases to 3 packets per node

per day, SSAR delivers 60% more packets than the latter with

only 10% more transmissions. This means that SSAR is more

efficient under high workloads.

The Effects of Workload

To evaluate the performance of SSAR under higher

workloads, we change the packet generation rate from 1

packet per node per day to 3 packets per node per day. Each

node on average has 25 social ties. Figure 2(c) and Figure 2(d)

show the results. When the workload increases, all algorithms

have lower packet delivery ratios and more transmissions.

However, they change at different rates, especially SSAR and

PROPHET-1. When the packet generation rate is 1 packet per

node per day, SSAR delivers 40% more packets than

PROPHET-1 with 60% more transmissions. When the rate

increases to 3 packets per node per day, SSAR delivers 60%

more packets than the latter with only 10% more

transmissions. This means that SSAR is more efficient under

high workloads.

The Effects of the Average Number of Social Ties perNode

The packet delivery ratio of SimBet and PROPHET-1 even

drops a little bit. The reason is as follows. With the contact

dependent social model, social ties are more likely to be added

to nodes with frequent contacts first, and then to nodes with

less frequent contacts. As a result, most later-added nodes

contact each other less frequently, and the network’s contact

opportunity does not increase too much. Moreover, the extra

data traffic due to the new social ties may overload the

existing hot spots, affecting the packet delivery ratio

negatively. Despite all these issues, SSAR still manages to

deliver some more packets, because it makes more balanced

use of social ties considering their contact opportunity,

willingness, and buffer constraint.

The Effects of Willingness to Forward for Nodes without

Social Ties
 In previous simulations, a node’s willingness to forward for

others without social ties has been set as 0. In some networks,

a generous user may be willing to forward packets for those

who have no social tie with him, though the willingness is

lower than that for those with social ties. To evaluate SSAR

under such environments, we set a small weight for nodes

without social ties to forward for others, and generate higher

weights for nodes with social ties. In this case, each node can

be seen as having a social tie with every other node, and

PROPHET-2 becomes identical to PROPHET-1.

2) Allowed Selfishness: One key feature of SSAR is that it

allows users to be socially selfish. To compare SSAR with

other algorithms on how much selfishness is allowed, we plot

the SS metric in Figure 4. The packet TTL is 25 days, and

each node on average has 25 social ties. SSAR allows better

selfishness than the other three algorithms. Specifically, SS in

SSAR is one magnitude larger than that of the other three

 International Journal of Computer Sciences and Engineering Vol.-2(9), PP(50-56) Sep 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 56

algorithms. SSAR allows more selfishness because its buffer

management policy satisfies social selfishness.

VII. DISCUSSION OF EXPERIMENT

The Impact of Various Packet Loss Rate on iTrust

In the previous section, we have shown that iTrust could also

thwart the grey hole attack. In this section, we evaluate the

performance of iTrust with different PLRs. In this experiment,

we measure the scenarios of varying PLR from 100% to 80%.

We set MNR as 10%, and the speed of 80 nodes varying from

10.5m/s to 11.5m/s. The message generation interval varies

from 25s to 35s, and the TTL of each message is 300s. This

implies iTrust will be effective for both black hole attack and

grey hole attack. The misidentified rate is not affected by

PLRs either. It is under 8% when the detection probability is

under 10%. Thus the variation of PLR will not affect the

performance of iTrust.

The Impact of Choosing Different Detection Probabilities

The above experiment results demonstrate that iTrust could

achieve a good performance gain due to the following two

reasons. Firstly, the detection performance of iTrust will not

increase significantly as the increase of detection probability.

Secondly, the inspection cost will increase along with the

increase of the detection probability. Thus we suggest a lower

detection probability such as 10% or 20%. And given the

analysis of the inspection game, TA could set a proper

punishment to ensure the detection probability. In this way,

TA could thwart the misbehavior of the malicious nodes and

stimulate the rational nodes.

VIII. CONCLUSION

In this paper, we have proposed a new statistical learning

Approach to string transformation. Our method is novel and

unique in its model, Routing algorithm, and misbehavior

detection algorithm. Two specific applications are addressed

with our method, namely spelling error correction of queries

and query reformulation in web Search. Experimental results

on two large data sets and Microsoft Speller Challenge show

that our method improves upon the baselines in terms of

accuracy and efficiency. Our method is particularly useful

when the-problem occurs on a large scale.

REFERENCES

[1] R. Lu, X. Lin, H. Zhu, and X. Shen, “SPARK: A New VANET-

based Smart Parking Scheme for Large Parking Lots”, IEEE

INFOCOM’09, April 2009.

[2]A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in

intermittently connected networks”,ACM SIGMOBILE CCR,

vol. 7, no. 3, pp. 19–20, 2003.

[3]E.Daly and M. Haahr, “Social network analysis for routing in

disconnected delay-tolerant MANETs, ”Proc. MobiHoc, pp. 32–

40, 2007.

[4] J. J. Jaramillo and R. Srikant, “Darwin: Distributed and adaptive

Reputation mechanism for wireless ad-hoc networks” , Proc.

MobiCom, 2007.

[5] H.Zhu, X.Lin, R.Lu, Y.Fan and X. Shen,“SMART:A Secure

Multilayer Credit -Based Incentive Scheme for Delay-Tolerant

Networks,” IEEE vol.58,no.8,pp.828-836,2009.

[6] S.Reidt, M.Srivatsa, S.Balfe,“The Fable of the Bees:

Incentivizing Robust Revocation Decision Making in Ad Hoc

Networks” inCCS’09,2009.

[7] E. Ayday, H. Lee and F. Fekri,“Trust Management and

Adversary Detection for Delay Tolerant Networks,”

inMilcom’10, 2010.

[8] B.B.Chen, M.C.Chan,“Mobicent:a Credit-Based Incentive

System for Disruption Tolerant Network” IEEE

INFOCOM’2010.

[9] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Dtn

routing as a resource allocation problem,”Proc. ACM

SIGCOMM, 2007.

[10] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F.

Salman, “Approximation algorithms for the multiple knapsack

problem with assignment restrictions,”Journal of Combinatorial

Optimization,vol.4, pp. 171–186, 2000.

[11] M. Granovetter, “The strength of weak ties,” The American

Journal of Sociology, vol. 78, no. 6, 1973.

[12] A. Mislove, M. Marcon, K. P. Gummadi, Druschel, and

Bhattacharjee, “Measurement and analysis of online social

networks,”Proc. IMC, 2007.

[13] E. Gilbert and K. Karahalios, “Predicting tie strength with social

media,”Proc. CHI, 2009.

[14] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based

forwarding in delay tolerant networks,” Proc. MobiHoc, pp.

241–250, 2008.

[15] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot,

“Delegation Forwarding,”Proc. MobiHoc, 2008.

