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Abstract— Malicious and selfish behaviors represent a serious threat against routing in Delay/Disruption Tolerant Networks 

(DTNs). Due to the unique network characteristics, designing a misbehavior detection scheme in DTN is regarded as a great 

challenge. In this paper, we propose iTrust, a probabilistic misbehavior detection scheme, for secure DTN routing towards 

efficient trust establishment. The basic idea of iTrust is introducing a periodically available Trusted Authority (TA) to judge the 

node’s behavior based on the collected routing evidences and probabilistically checking. A new VANET-based smart parking 

scheme (SPARK) for large parking lots provide three convenient services for drivers: 1) real-time parking navigation; 2) 

intelligent anti-theft protection; and 3) friendly parking information dissemination. TA could ensure the security of DTN routing 

at a reduced cost. To further improve the efficiency of the proposed scheme, we correlate detection probability with a node’s 

reputation, which allows a dynamic detection probability determined by the trust of the users. The extensive analysis and 

simulation results show that the proposed scheme substantiates the effectiveness and efficiency of the proposed scheme. 

Keywords— VANET ,ITRUSTED , DTNS. 

 

I.  INTRODUCTION  

 Delay tolerant networks (DTNs), such as sensor networks 

with scheduled intermittent connectivity, vehicular DTNs that 

disseminate location-dependent information (e.g., local ads, 

traffic reports, parking information) [1], which makes routing 

quite different from other wireless networks. For example, 

since an end-to-end connection is hard to setup, store-carry-

and forward is used to deliver the packets to the destination. 

Although many routing algorithms [2]–[3] have been  

proposed to increase data delivery reliability. 

 

Pocket-switched networks that allow humans to communicate 

without network infrastructure, are highly partitioned 

networks that may suffer from frequent dis-connectivity. In 

DTNs, the in-transit messages, also named bundles, can be 

sent over an existing link and buffered at the next hop until the 

next link in the path appears. In DTNs, a node could 

misbehave by dropping packets intentionally even when it has 

the capability to forward the data. As a result, in civilian 

DTNs such as PeopleNet and Pocket Switched Network [4], a 

node may not be willing to forward packets for others. 

                         To capture user selfishness in a more realistic 

manner, we have two observations from the social 

perspective. First, a selfish user is usually willing to help 

others with whom he has social ties (e.g., friends, coworkers, 

roommates). Routing misbehavior can be caused by selfish (or 

rational) nodes that try to maximize their own benefits by 

enjoying the services provided by DTN while refusing to 

forward the bundles for others, or malicious nodes that drop 

packets or modifying the packets to launch attacks. 

                        Social selfishness will affect node behaviors. 

As a forwarding service provider, a node will not forward 

packets received from those with whom it has no social ties, 

and it gives preference to packets received from nodes with 

stronger ties when the resource is limited. Thus, a DTN 

routing algorithm. should take the social selfishness into 

consideration. 

 

II. PRELIMINARY 

2.1 System Model 

In this paper, we adopt the system model similar to [5]. We 

consider a normal DTN consisted of mobile devices owned by 

individual users. Each node i  is assumed to have a unique ID 

Ni and a corresponding public/private key pair. We assume 

that each node must pay a deposit C before it joins the 

network, and the deposit will be paid back after the node 

leaves if there is no misbehavior activity of the node. Similar 

to [6], we assume that a periodically available TA exists so 

that it could take the responsibility of misbehavior detection in 

DTN. For a specific detection target Ni , TA will request 

Ni’s forwarding history in the global network. 

                                 Therefore, each node will submit its 

collected Ni’s forwarding history to TA via two possible 

approaches. In a pure peer-to-peer DTN, the forwarding 

history could be sent to some special network components 

(e.g., roadside unit (RSU) in vehicular DTNs or judge nodes 

in [7]) via DTN transmission. In some hybrid DTN network 

environment, the transmission between TA and each node 

could be also performed in a direct transmission manner (e.g., 

WIMAX or cellular networks [8]). We argue that since the 

misbehavior detection is performed periodically, the message 
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transmission could be performed in a batch model, which 

could further reduce the transmission overhead. 

 

2.2 Architecture 

 
Fig. 1. SSAR overview where node N meets node M. The dashed rectangles  

enclose   the information exchanged in step 2 and step 3  

 

Figure 1 shows the architecture of SSAR, which has the 

following four components.  

Packet priority manager: It calculates a priority for each 

buffered packet based on the willingness between nodes that 

the packet has traversed. This priority of a packet measures 

the social importance of the packet to the node.  

Buffer manager: It manages buffers based on packet priority: 

(i) packets with priority 0 will not be buffered; (ii) when 

buffer overflows, packets of low priority are dropped first. 

That is, a new incoming packet can preempt the buffer 

occupied by lower-priority packets. This policy exactly 

follows the philosophy of “design for user”. 

 

Delivery probability estimator: It estimates a node’s “delivery 

probability” of a packet, which is used to quantify the node’s 

forwarding capability for that packet. A node forwards the 

packet to the neighbor with a higher delivery probability. 

 

Traditionally, the quality of a relay is measured solely based 

on its contact opportunity to the destination node. SSAR 

measures the delivery probability of a node based on both of 

its contact opportunity to the destination and its willingness to 

forward.  

 

It is straightforward that a node with a low contact opportunity 

should not be a relay. Interestingly, a node with a high contact 

opportunity but low willingness should not be a relay either . 

 

Suppose S has a packet m1 to send to D, and it successively 

meets A, C, and B. If only contact opportunity is considered, 

it will forward m1 to A. Unfortunately, A will drop m1 since 

it is unwilling to forward for S(the edge weight is0). SSAR 

will avoid such forwarding. Though C is willing to forward 

m1, its willingness is so low that m1 may suffer high risk of 

being dropped, so SSAR will avoid such forwarding. As a 

result, B is the optimal forwarder for m1in this scenario, since 

it has high willingness to forward and a high contact 

opportunity. Forwarding set manager After a node determines 

a set of packets that should be forwarded to a better relay, 

existing routing protocols greedily transmit them no matter the 

receiver has enough buffers to hold these packets or not [9]. 

Obviously, bandwidth will be wasted if the transmitted 

packets are dropped due to buffer overflow. To address this 

issue, the forwarding set manager decides which packets to 

transmit by solving an MKPAR formulation. It considers the 

buffer constraint and transmits the packets that are most 

effective for social selfishness and routing performance. 

 

2.3 Design Requirements 

The design requirements include 

•Distributed: We require that a network authority responsible 

for the administration of the network is only required to be 

periodically available and consequently incapable of 

monitoring the operational minutiae of the network. 

• Robust: We require a misbehavior detection scheme that 

could tolerate various forwarding failures caused by various 

network environments. 

• Scalability: We require a scheme that works independent of 

the size and density of the network 

 

2.4 Literature survey 

Literature survey is the most important step in software 

development process. Before developing the tool it is 

necessary to determine the time factor, economy n company 

strength. Once these things are satisfied, ten next steps are to 

determine which operating system and language can be used 

for developing the tool. Once the programmers start building 

the tool the programmers need lot of external support. This 

support can be obtained from senior programmers, from book 

or from websites. Before building the system the above 

consideration are taken into account for developing the 

proposed system. 

 

III. NEW IMPLEMENTATION 

String transformation has many applications in data mining, 

natural language processing, information retrieval, and 

bioinformatics. String transformation has been studied in 

different specific tasks such as database record matching, 

spelling error correction, query reformulation and synonym 

mining. The major difference between our work and the 

existing work is that we focus on enhancement of both 

accuracy and efficiency of string transformation. 

 

3.1 Registration: 

An  Author(Owner) or User  have to register first,then only 

he/she has to access the data base. In that any of the above 

mentioned person have to login,they should login by giving 

their emailid and password. Then if an user wants to check the 

spelling, they  can check  and correct it automatically.  

 String Transformation: Here we are techniques for 

searching the String 1)String Generation,2)String 

Transformation. 
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String Generation: It means we have generated 50,000 

Strings in alphabetical order.From a to z like a,aa,…..z. 

 

String Transformation: It means we have given the user 

with the benefit of String Generation as well as String alias .It 

will be useful for the user for example if the end user have 

typed “TKDE” its equal to “Transactions on Knowledge and 

Data Engineering”.                                                                                                                                                                                                                                        

 

String  mining: The User has to download the string with its 

meanings also He/She can download its substrings and its 

reverse etc.Also check the given string which is present in the 

bunch of strings ,if its present the result will be “String 

Found” otherwise ”String NotFound”. 

In particular, TA judges if node Nj is a misbehavior or not by 

triggering the Algorithm 1. In this algorithm, we introduce 

BasicDetection, which takes j,Stask,Sforward, [t1,t2],R,Das 

well as the routing requirements of a specific routing protocol 

R,Das the input, and output the detection.      

 

Algorithm 1 The Basic misbehavior detection algorithm 

 

1:procedure  BASIC            

DETECTION((j,Stask,Sforward,[t1,t2],R,D)) 

  2:  for Each m∈  Stask do 

  3:    if m ∉  Sforward and  R!=0 then 

  4:       return 1 

  5:    else if m∈Sforward  and  Nk(m) ⊄ R then 

  6:       return 1 

  7:else if m ∈ Sforward and Nk(m) ⊂ R                                        

and | Nk(m)|< D            then 

  8:       return 1 

  9:     end if 

 10: end for 

 11: return 0 

 12: end procedure 

 

 

result “1” to indicate that the target node is a misbehavior or 

“0” to indicate that it is an honest node. The proposed 

algorithm itself incurs a low checking overhead. However, to 

prevent malicious users from providing fake delegation 

/forwarding /contact evidences, TA should check the 

authenticity of  each evidence by verifying the corresponding 

signatures, which introduce a high transmission and signature 

verification overhead. We will give a detailed cost analysis in 

Section 4.2. In the following section, inspired by the 

inspection game, we will propose a probabilistic misbehavior 

detection scheme to reduce the detection overhead without 

compromising the detection performance. 

 

3.2 Forwarding Set Optimization 

In this subsection, we solve the following problem: suppose a 

node M contacts N, and M has determined a candidate packet 

set C for which N has higher delivery probabilities. Since N’s 

buffer may be inadequate to accept all packets in C, and the 

contact duration may be too short to transmit all these packets, 

how to determine a subset of C to transmit and in what 

order?We follow two principles. First,M will not forward a 

packet to N if N does not have sufficient buffers for that 

packet. According to the buffer management rule, N’s 

available buffer size Lm for m is: 

Lm = L0 + ∑         lk        ……….1 

                                       {k/pk<p}  

 

where L0 denotes N’s empty buffer size, {k|pk < p} denotes 

the packets in N’s buffer whose priority is smaller than that of 

m (p), and lk denotes the size of packet k. Second, M tries to 

maximize its selfish gain through this contact, which is 

defined as follows. 

 

Definition 1 (Selfish Gain) The selfish gain g that M achieves 

by forwarding m to N is the product of m’s priority p in M and 

the increment of delivery probability, i.e., g =p ・ ∆Pdelivery. 

Both factors in the definition are related to selfishness. P 

means how socially important the packet is. The larger p 

is, the more selfishness is gained. ∆Pdelivery means how 

much this forwarding can increase the packet’s probability to 

be delivered. The larger ∆Pdelivery is, the more help is 

provided. So their product is a natural representation of the 

gained selfishness. Suppose all the packets in C are sorted by 

priority in the increasing order, then we can simply use i to 

denote the ith packet. Let Xi denote if packet i is selected by 

the to be transmitted subset (Xi = 1) or not (Xi = 0). According 

to the above two principles, the problem can be formulated as: 

max  ∑ gi Xi      s.t.     ∀i      ∑  Xjlj  ≤ Li ..2 

                    i∈ C                              j≤ i 
                                                

Next we convert it into an MKPAR formulation [10], where 

each item can only be assigned to a subset of the knapsacks. 

Suppose the original buffer is divided into |C| + 1 knapsacks 

such that the first knapsack has size S1 = L1, the jth (j ∈{2, ..., 

|C|}) one has size Sj = Lj −Lj−1, and the (|C|+1)th one 

consists of buffers that cannot be preempted by any packet in 

C. Then packet i can only be packed into knapsacks indexed 

smaller than or equal to i. Let Xij denote if packet i is packed 

into knapsack j (Xij = 1) or not (Xij = 0), then Xij = 0 when i < 

j. Eq. 2 can be rewritten as an MKPAR: 

     

max 

||c

∑
||c

∑ giXij 

         i=1  j=1 

s.t. i∀  ∑Xij ≤  1, j∀ ∑Xijli ≤  Sj  ...3 

                                 j                        i   

                                                 

Since a simpler variation of MKPAR has been proved by 

Dawande et al. [10] to be NP-hard, MKPAR is also NP-hard. 

Thus, we give a greedy algorithm, which ranks the packets in 

the decreasing order of selfish gain weighted by packet size, 

and packs them one by one until no more packets can be 

packed. 
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IV. PERFORMANCE EVALUATIONS 
 

 

 In this section, we evaluate the performance of SSAR and 

compare it to other existing routing algorithms. 
 

4.1 Experiment Setup 
The trace does not have the accurate social relationship 

information among participants, we need to construct a 

weighted directed social graph upon them. To better study 

SSAR, we evaluate it on two types of social graphs. The first 

type of social graph is probabilistically contact dependent. It 

can be built based on the following heuristic, which has been 

verified by many sociology studies [11]. The stronger tie two 

individuals have, the more likely they contact frequently. 

Individuals with more social ties are more likely to meet other 

people. Let f∗ denote the overall contact frequency of the 

whole trace, fN denote node N’s overall contact frequency, 

and fNM denote the contact frequency between N and M. The 

graph is constructed in four steps: 

 

1) We generate power-law distributed node degrees based on 

several measurement studies [12]. 

2) We repeatedly assign those degrees to nodes in the trace, 

i.e., assign the largest degree to a node in such a way that node 

N’s probability to be selected is fN/f∗, and repeat this for the 

remaining degrees and nodes. 

3) We generate weights for the social ties (edges) of each 

node. The best empirical data we can find about social tie 

strength is from one recent study in which participants rate 

their friendship nearly uniformly between 0 and 1 [13]. Thus, 

we generate weights for each node’s social ties that are 

uniformly distributed within [0,1]. 

4) For each node N, we connect its ties to other nodes. We 

connect the strongest tie to another node in a way that node 

M’s probability to be connected is fNM/fN, and repeat this for 

the other ties and not-connected nodes. In the end, for any 

ordered node pair NM that has not been connected yet, the 

weight of edge NM is set 0. 

 

The second type is random social graph that is also 

constructed in four steps. The first and third steps are the 

same, but in the second and fourth steps we assign degrees to 

random nodes, assign weights to random social ties, and 

connect social ties to random nodes. One important feature of 

a social network is the average number of social ties per node; 

i.e., the number of nodes with a social tie strength larger than 

0. In some networks, each node only has a few social ties; 

while in others, each node has many social ties. To generate 

social graphs with different average numbers of social ties per 

node, we fix the power law coefficient at 1.76 [12] when 

generating node degrees, but change the minimum acceptable 

degree. 

 

4.2 Routing Algorithms and Metrics 

1) Routing Algorithms: We compare SSAR with two other 

benchmark algorithms, PROPHET [2] and SimBet [3]. 

PROPHET is a standard non-oblivious benchmark that has 

been used to compare against several previous works [14]. It 

calculates a metric, delivery predictability, based on contact 

histories, and relays a packet to a node with higher delivery 

predictability. We use the same parameters as in [2], and age 

the delivery predictability upon every contact as done in [14]. 

 

SimBet has also been used as a benchmark in several works 

[15]. It calculates a simbet metric using two social measures 

(similarity and betweenness). A packet is forwarded to a node 

if that node has higher simbet metric than the current one. We 

use the same parameters as in [3]. Since the original 

algorithms do not define the order of packets to be transmitted 

during a contact, we adopt the transmission order used in 

RAPID [9]. Because this order has been shown to be the most 

effective, we believe such refinement does not favor SSAR in 

comparison. Since the original algorithm either assumes 

infinite buffer (SimBet) or assumes finite buffer but does not 

specify the packet dropping policy (PROPHET), we apply 

three policies (drop-tail, random drop, and minimum-utility-

drop-first) in simulation, and only present the results of the 

best policy here, i.e., minimum utility- drop-first. Since it is 

impossible to traverse all dropping policies and choose the 

optimal one, we tried our best to impose the minimum 

influence on the original algorithms. PROPHET and SimBet 

are designed without considering social selfishness. For fair 

comparison, we modified them to be selfishness-aware. That 

is, nodes do not forward packets to others who are not willing 

to forward for them, and avoid immediate droppings caused 

by selfishness.       However, when nodes forward packets to 

others who are willing to forward for them, they still follow 

the aforementioned transmission order and buffer policy. To 

show the effect of such selfishness awareness, we also include 

the basic PROPHET in our simulations. For convenience, we 

label the selfishness-aware PROPHET PROPHET-1, and label 

the basic one PROPHET-2. 

 

2) Metrics: We use the following metrics to evaluate these 

algorithms: packet delivery ratio, the total number of 

transmissions, and selfishness satisfaction (SS). Packet 

delivery ratio is defined as the proportion of packets that are 

delivered to their destinations out of the total unique packets 

generated. The total number of transmissions can be used as a 

cost factor [3], and fewer transmissions mean lower cost. SS is 

defined as the ratio of the average priority of all forwarded or 

delivered packets over the average priority of all dropped 

packets. SS reflects how much users are satisfied with the 

network, because a larger SS indicates more important 

messages are served. SSAR, PROPHET, and SimBet are 

expected to have similar cost since all of them have only one 

replica of a packet. 

 

V. THE ADVANCED ITRUST:A PROBABILISTIC 

MISBEHAVIOR  DETECTION  SCHEME  

IN  DTNS 
 

We start from Algorithm 2, which shows the details of the 

proposed probabilistic misbehavior detection scheme. For a 

particular node i, TA will launch an investigation at the 
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probability of pb. If i could pass the investigation by 

providing the corresponding evidences, TA will pay node i a 

compensation w; otherwise, I will receive a punishment 

C(lose its deposit). In the next subsection, we will model the 

above described algorithm as an Inspection Game. And we 

will demonstrate that, by setting an appropriate detection 

probability threshold, we could achieve a lower detection 

overhead and still stimulate the nodes to forward the packets 

for other node. 

 

 

Algorithm 2 the proposed probabilistic misbehaviour  

Detection algorithm 

 

1:initialize the number of nodes n 

2:for i ← 1 to n do 

3:Generate a random number mi from 0 to 10
n
-1 

4:if mi/10
n
 < pb then 

5:ask all the nodes (including node i) to provide 

    evidence about node i 

6:if BasicDetection(i ,Stask, Sforward,[t1,t2],R,D) 

    then 

7:     give a punishment  C to node i 

8:else 

9:      pay node i the compensation w 

10: end if 

11:else 

12:     pay node I the compensation w 

13:  end if 

14:end for 

 

The Reduction of Misbehavior Detection Cost by 

Probabilistic Verification 
In this section, we give a formal analysis on the misbehaviour 

detection cost incurred by evidence transmission and 

verification. We model the movements and contacts as a 

stochastic process in DTNs, and the time interval t between 

two successive contacts of node Ni and Nj follows the 

exponential 

distribution [17]: 

p{≤  x} = 1- 
xtj

e
λ−

,x ∈[0, ∞ ]…..4 

where λij is the contact rate between Ni and Nj , the expected 

contact interval between Ni and Nj is E[t] = 1 λij.  We further 

denote Costtransmission as the evidences transmission cost 

and Costverification as the evidence signature verification 

cost for any contact. The below Theorem 2 gives a detailed 

analysis on the cost incurred by iTrust. 

 

Theorem 2: Given that pb is the detection probability, ¯ λ is the 

mean value of all the λij , T is the inspection period, N is the 

number of nodes, Costtransmission and Costverification are 

the evidence transmission cost and evidence signature 

verification cost for a contact, the misbehavior detection cost 

in the whole network could be estimated as 

).
2

*(||
2

1
onverificationtransmissib CostCostNTp +λ  

                                                                                         ….5 

Proof: Given the above mentioned parameters, we could 

obtain the number of contacts |H| as 

|H| =
2

1 ∑∑
≠iji

 
2||

2

11
/ NTT

ij

λ
λ

≈  

                                                                                     ..6 

If the detection probability is pb, the expectation of the 

transmission and verification cost for these contact evidences 

will be 

E = pb |H| = 
2

1
pb )*(|| 2

veficationontransmissi CostCostNT
+

λ                    

…..7 

 

Equation 6 shows that between two time slots, the number of 

the contacts among |N| nodes is in line with the time T and the 

square of the number of the nodes. Then the cost of 

misbehavior detection (including evidence transmission and 

verification cost) is linear to the detection probability pb. 

From Theorem 2, it is observed that the misbehavior detection 

cost could be significantly reduced if choosing an appropriate 

detection probability without compromising the security level. 

 

In the experiment section, we will show that a detection 

probability of 10% is efficient enough for misbehavior 

detection, which means the cost of misbehavior detection will 

be reduced to 10%, which will save a lot of resource of the TA 

and the network. 

 

Exploiting Reputation System to Further Improve the 

Performance of iTrust 

In the previous section, we have shown that the basic iTrust 

could assure the security of DTN routings at the reduced 

detection cost. However, the basic scheme assumes the same 

detection probability for each node, which may not be 

desirable in practice. Intuitively, an honest node could be 

detected with a low detection probability to further reduce the 

cost while a misbehaving node should be detected with a 

higher detection probability to prevent its future misbehavior. 

Therefore, in this section, we could combine iTrust with a 

reputation system which correlates the detection probability 

with nodes’ reputation. The reputation system of iTrust could 

update node’s reputation r based on the previous round of 

detection result, and, thereafter, the reputation of this node 

could be used to determine its inspection probability p. We 

define the inspection probability p to be the inverse function 

of reputation r. Note that, p must not be higher than the bound 

g w+C to assure the network security level, which has been 

discussed before. Further, it is obvious that p cannot be larger 

than 1, which is the upper bound of detection probability. If a 

node’s p is 1, it means this node has been labeled as a 

malicious one and thus should be detected for all the time. 

What’s more important, a node with a lower reputation will 

lead to a higher inspection probability as well as a decrease of 

its expected payoff πw. 

 

VI. RESULT 
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1) Performance and Cost:The Effects of TTLWe change the 

packet TTL from 0 to 125 days to see its effects on the packet 

delivery ratio and the cost. Each node has 25 social ties. 

Figure 2(a) shows the packet delivery ratio under the contact-

dependent social graph. As the TTL increases, all algorithms 

can deliver more packets to the destinations. However, the 

delivery ratios will not increase after the TTL reaches a 

certain value, e.g., 25 days in SimBet and 50 days for the 

other three algorithms. This is because, after the TTL reaches 

some value, the forwarding capacity of the network becomes 

the performance bottleneck. Among all algorithms, SSAR has 

the highest packet delivery ratio 
 

 
 

 

Fig. 2. Comparison of performance and cost. For (e), the packet TTL 

is 100 days. (a)(b) Results under the contact-dependent social graph.  

(c)(d) Results under different workloads on average. 

 

Figure 2(b) shows the cost under the contact-dependent social 

graph. As the TTL increases, all algorithms have more 

transmissions, because packets stay longer in the network and 

have more opportunities to be transmitted. The total number 

of transmissions does not increase too much after the TTL 

reaches some value (about 75 days), when the number of 

transmissions is limited by the contact opportunities of the 

trace. Among the algorithms, SimBet has the most number of 

transmissions, which is about 60% more than that SSAR and 

150% more than PROPHET-1 and PROPHET-2.  

 

The Effects of Workload To evaluate the performance of 

SSAR under higher workloads, we change the packet 

generation rate from 1 packet per node per day to 3 packets 

per node per day. Each node on average has 25 social ties. 

Figure 2(c) and Figure 2(d) show the results. When the 

workload increases, all algorithms have lower packet delivery 

ratios and more transmissions. However, they change at 

different rates, especially SSAR and PROPHET-1. When the 

packet generation rate is 1 packet per node per day, SSAR 

delivers 40% more packets than PROPHET-1 with 60% more 

transmissions. When the rate increases to 3 packets per node 

per day, SSAR delivers 60% more packets than the latter with 

only 10% more transmissions. This means that SSAR is more 

efficient under high workloads. 

 

The Effects of Workload  

To evaluate the performance of SSAR under higher 

workloads, we change the packet generation rate from 1 

packet per node per day to 3 packets per node per day. Each 

node on average has 25 social ties. Figure 2(c) and Figure 2(d) 

show the results. When the workload increases, all algorithms 

have lower packet delivery ratios and more transmissions. 

However, they change at different rates, especially SSAR and 

PROPHET-1. When the packet generation rate is 1 packet per 

node per day, SSAR delivers 40% more packets than 

PROPHET-1 with 60% more transmissions. When the rate 

increases to 3 packets per node per day, SSAR delivers 60% 

more packets than the latter with only 10% more 

transmissions. This means that SSAR is more efficient under 

high workloads. 

 

The Effects of the Average Number of Social Ties perNode 

The packet delivery ratio of SimBet and PROPHET-1 even 

drops a little bit. The reason is as follows. With the contact 

dependent social model, social ties are more likely to be added 

to nodes with frequent contacts first, and then to nodes with 

less frequent contacts. As a result, most later-added nodes 

contact each other less frequently, and the network’s contact 

opportunity does not increase too much. Moreover, the extra 

data traffic due to the new social ties may overload the 

existing hot spots, affecting the packet delivery ratio 

negatively. Despite all these issues, SSAR still manages to 

deliver some more packets, because it makes more balanced 

use of social ties considering their contact opportunity, 

willingness, and buffer constraint. 

 

The Effects of Willingness to Forward for Nodes without 

Social Ties 
 In previous simulations, a node’s willingness to forward for 

others without social ties has been set as 0. In some networks, 

a generous user may be willing to forward packets for those 

who have no social tie with him, though the willingness is 

lower than that for those with social ties. To evaluate SSAR 

under such environments, we set a small weight for nodes 

without social ties to forward for others, and generate higher 

weights for nodes with social ties. In this case, each node can 

be seen as having a social tie with every other node, and 

PROPHET-2 becomes identical to PROPHET-1. 

 

2) Allowed Selfishness: One key feature of SSAR is that it 

allows users to be socially selfish. To compare SSAR with 

other algorithms on how much selfishness is allowed, we plot 

the SS metric in Figure 4. The packet TTL is 25 days, and 

each node on average has 25 social ties. SSAR allows better 

selfishness than the other three algorithms. Specifically, SS in 

SSAR is one magnitude larger than that of the other three 
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algorithms. SSAR allows more selfishness because its buffer 

management policy satisfies social selfishness.  

VII. DISCUSSION OF EXPERIMENT 

 

The Impact of Various Packet Loss Rate on iTrust 

In the previous section, we have shown that iTrust could also 

thwart the grey hole attack. In this section, we evaluate the 

performance of iTrust with different PLRs. In this experiment, 

we measure the scenarios of varying PLR from 100% to 80%. 

We set MNR as 10%, and the speed of 80 nodes varying from 

10.5m/s to 11.5m/s. The message generation interval varies 

from 25s to 35s, and the TTL of each message is 300s.  This 

implies iTrust will be effective for both black hole attack and 

grey hole attack. The misidentified rate is not affected by 

PLRs either. It is under 8% when the detection probability is 

under 10%. Thus the variation of PLR will not affect the 

performance of iTrust. 

 

The Impact of Choosing Different Detection Probabilities 

The above experiment results demonstrate that iTrust could 

achieve a good performance gain due to the following two 

reasons. Firstly, the detection performance of iTrust will not 

increase significantly as the increase of detection probability. 

Secondly, the inspection cost will increase along with the 

increase of the detection probability. Thus we suggest a lower 

detection probability such as 10% or 20%. And given the 

analysis of the inspection game, TA could set a proper 

punishment to ensure the detection probability. In this way, 

TA could thwart the misbehavior of the malicious nodes and 

stimulate the rational nodes. 
 

VIII. CONCLUSION 

 

In this paper, we have proposed a new statistical learning 

Approach   to string transformation. Our method is novel and 

unique in its model, Routing algorithm, and   misbehavior 

detection algorithm. Two specific applications are addressed 

with our method, namely spelling error correction of queries 

and query reformulation in web Search. Experimental results 

on two large data sets and Microsoft Speller Challenge show 

that our method improves upon the baselines in terms of 

accuracy and efficiency. Our method is particularly useful 

when the-problem occurs on a large scale. 
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