Implementation of an Improved ID3 Decision Tree Algorithm in Data Mining System

M.Jayakameswaraiah¹* and S.Ramakrishna²

¹² Dept. of Computer Science, Sri Venkateswara University, Tirupati, India
email: mjayakameswaraiah@gmail.com; drsramakrishna@yahoo.com

Abstract—Inductive learning is the learning that is based on induction. In inductive learning Decision tree algorithms are very famous. For the appropriate classification of the objects with the given attributes inductive methods use these algorithms basically. Decision tree is an important method for both induction research and data mining, which is mainly used for model classification and prediction. ID3 algorithm is the most widely used algorithm in the decision tree so far. Through illustrating on the basic ideas of decision tree in data mining, in this paper, the shortcoming of ID3’s inclining to choose attributes with many values is discussed, and then a new decision tree algorithm combining ID3 and Association Function (AF) is presented. The experiment results show that the proposed algorithm can overcome ID3’s shortcoming effectively and get more reasonable and effective rules. The algorithm is implemented in the java language.

Keywords — Data Mining, Decision tree, ID3Algorithm, Association Function (AF), Classification

I. INTRODUCTION

In the human history, people had used various technologies to model themselves. With the development of computer technology and computer network technology, the degree of information is getting higher and higher, people’s ability of using information technology to collect and produce data is substantially enhanced. How can we not be drowned by the sea of information, and from which discovering useful knowledge and improving the effectiveness of information utilization are problems need to be addressed urgently. It was under this background that Data Mining (DM) technology came into being and developed. Data mining is a process to extract information and knowledge from a large number of incomplete, noisy, fuzzy and random data. In these data, the information and knowledge are implicit, which people do not know in advance, but potentially useful. At present, the decision tree has become an important data mining method. The basic learning approach of decision tree is greedy algorithm, which use the recursive top-down approach of decision tree structure. Quinlan in 1979 put forward a well-known ID3 [1,4,5] algorithm, which is the most widely used algorithm in decision tree. But that algorithm has a defect of tending to use attributes with many values. Aiming at the shortcomings of the ID3 algorithm, in the paper, an association function is introduced to improve ID3 algorithm. The result of experiment shows that the presented algorithm is effective.

II. ID3 ALGORITHM

In the decision tree method, information gain approach is generally used to determine suitable property for each node of a generated decision tree. Thus, we can select the attribute with the highest information gain (entropy reduction in the level of maximum) as the test attribute of current node. In this way, the information needed to classify the training sample subset obtained from later on partitioning will be the smallest. That is to say, the use of this property to partition the sample set contained in current node will make the mixture degree of different types for all generated sample subsets reduce to a minimum. Therefore, the use of such an information theory approach will effectively reduce the required dividing number of object classification [6].

Set S is set including s number of data samples whose type attribute can take m potential different values corresponding to m different types of \(C_i \) (i=1,2,3,...,m). Assume that \(S \) is the sample number of \(C_i \). Then, the required amount of information to classify a given data is

\[
I(s_1, s_2, ..., s_m) = -\sum_{i=1}^{m} P_i \log P_i \tag{1}
\]

where \(P_i = \frac{|S_i|}{|S|} \) is the probability that any subset of data samples belonging to categories \(C_i \).

Suppose that A is a property which has v different values {a₁, a₂,..., aₜ}. Using the property of A, S can be divided into v number of subsets \(\{S_{a_1}, S_{a_2}, ..., S_{a_v}\} \), in which \(S_{a_i} \) contains data samples whose attribute A are equal \(a_i \) in S set. If property A is selected as the property for test, that is, to use make partitions for current sample set, suppose that \(S_{a_i} \) is a sample set of type \(C_i \) in subset \(S \), the required information entropy is

\[
E(A) = \sum_{j=1}^{v} \frac{|S_{a_i}|}{|S|} \log \left(\frac{|S_{a_i}|}{|S|} \right) \tag{2}
\]

Such use of property A on the current branch node corresponding set partitioning samples obtained information
gain is:

\[\text{Gain} (A) = I(S_1, S_2, \ldots , S_m) - E(A) \]

(ID3) algorithm traverses possible decision-making space using top-down greedy search strategy, and never trace back and reconsider previous selections. Information gain is exactly growth tree in ID3 algorithm.

2.1 Algorithm for generating a decision tree[2] according to a given data sets

Input: training samples, each attribute taking discrete value, a candidate attribute set available for induction is attribute_list.

Output: a decision tree.

Deal flow:
1) Create a node N;
2) If all samples of the node are of the same category C, then return N as a leaf node and mark with category C, the beginning root node corresponds to all the training samples;
3) If attribute_list is empty, then return as a leaf node and mark the node as a type whose samples contain the largest number of categories;
4) select a test_attribute with the largest information gain from attribute_list, and mark node N with test_attribute;
5) For each given value \(a_i \) of test_attribute, the sample set contained in node N is portioned.
6) According to the condition of test_attribute = \(a_i \), a corresponding branch is generated from the node N to indicate the test conditions;
7) Set \(S_i \) is the obtained sample set under the condition of test_attribute = \(a_i \). If \(S_i \) is empty, then mark the corresponding leaf node with category of including the most number of sample types. Otherwise, it will be marked with the return value:

Generate_decision_tree(s, attribute_list, test_attribute);

This is a greedy algorithm which use recursive manner of top-down, divide and conquer to construct a decision tree. The termination condition of recursion is: all samples within a node are of the same category. If no attribute can be used to divide current sample set, then voting principle is used to make it a Compulsory leaf node, and mark it with the category of having the most number of sample types. If no sample satisfies the condition of test_attribute = \(a_i \), then a leaf node is created, and mark it with the category of having the most number of sample types.

2.2 The shortcoming of ID3 algorithm

The principle of selecting attribute A as test attribute for ID3 is to make E (A) of attribute A, the smallest. Study suggest that there exists a problem with this method, this means that it often biased to select attributes with more taken values[3,6], however, which are not necessarily the best attributes. In other words, it is not so important in real situation for those attributes selected by ID3 algorithm to be judged firstly according to make value of entropy minimal. Besides, ID3 algorithm selects attributes in terms of information entropy which is computed based on probabilities, while probability method is only suitable for solving stochastic problems. Aimed at these shortcomings for ID3 algorithm, some improvements on ID3 algorithm are made and a improved decision tree algorithm is presented.

III. THE IMPROVED ID3 ALGORITHM

To overcome the shortcoming stated above, attribute related method is firstly applied to computer the importance of each attribute. Then, information gain is combined with attribute importance, and it is used as a new standard of attribute selection to construct decision tree. The conventional methods for computing attribute importance are sensitivity analysis (SA)[7], information entropy based joint information entropy method(MI)[8], Separation Method(SCM)[9], Correlation Function Method(AF)[10,11], etc. SA needs not only to compute derivatives of output respect to input or weights of neural network, but also to train the neural network. This will increase computational complexity. MI needs to compute density function and it is not suitable for continuous numerical values. SCM computes separation property of input-output and the correlation property of input and output attributes and is suitable for both continuous and discrete numerical values, but computation is complex. AF not only can well overcome the ID3’s deficiency of tending to take value with more attributes, but also can represent the relations between all elements and their attributes. Therefore, the obtained relation degree value of attribute can reflect its importance. AF algorithm: Suppose \(A \) is an attribute of data set \(D \), and \(C \) is the category attribute of \(D \). The relation degree function between \(A \) and \(C \) can be expressed as follows:

\[AF(A) = \frac{\sum_{j=1}^{n} x_{ij}}{n} \]

Where \(x_{ij} \) (\(j = 1, 2 \) represents two kinds of cases) indicates that attribute \(A \) of \(D \) takes the \(i \)-th value and category attribute \(C \) takes the sample number of the \(j \)-th value, \(n \) is the number of values attribute \(A \) takes.

Then, the normalization of relation degree function value is followed. Suppose that there are \(m \) attributes and each attribute relation degree function value are \(AF(1), AF(2), \ldots, AF(m) \), respectively. Thus, there is

\[V(K) = \frac{AF(A)}{AF(1)+AF(2)+\ldots+AF(m)} \]

Which \(0 < k \leq m \). Then, equation (3) can be modified as

\[\text{Gain}'(A) = (I(S_1, S_2, \ldots , S_m)-E(A)) \times V(A) \]

\(\text{Gain}'(A) \) can be used as a new criterion for attribute selection to construct decision tree according to the procedures of ID3 algorithm. Namely, decision tree can be constructed by selecting the attribute with the largest \(\text{Gain}'(A) \) value as test attribute. By this way, the
shortcomings of using ID3 can be overcome. It construct the
decision tree, this tree structure will be able to effectively
overcome the inherent drawbacks of ID3 algorithm.

IV. EXPERIMENTAL RESULTS

A customer database of some shopping mall is shown in
Table 1 (a training sample set). The category attribute of the
sample set is "buying-computer", which can take two
different values: buying-computer or No buying-computer

TABLE 1. Shopping mall customer database

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Color-cloth</th>
<th>Income</th>
<th>Student</th>
<th>Buy-computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>40</td>
<td>Red</td>
<td>High</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td><30</td>
<td>Yellow</td>
<td>High</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>30-40</td>
<td>Blue</td>
<td>High</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>>40</td>
<td>Red</td>
<td>Medium</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td><30</td>
<td>White</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>>40</td>
<td>Red</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>30-40</td>
<td>Blue</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td><30</td>
<td>Yellow</td>
<td>Medium</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td><30</td>
<td>Yellow</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>>40</td>
<td>White</td>
<td>Medium</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

In order to illustrate the effectiveness of our present
algorithm, the improved ID3 algorithm and ID3 algorithm
are applied on this example to construct decision trees and
comparison is made. Figure (a) and figure (b) show the
generated decision trees using the ID3 algorithm and the
improved ID3 algorithm, respectively.

The two results of the experiment shows that ID3 algorithm
choose attribute color-cloth as root node to generate decision
tree, but the importance of attribute color-cloth is lower than
the other attributes, and it is just the shortcoming of ID3
which tends to take attributes with many values. However
the improved ID3 algorithm decreases the importance of
attribute color-cloth in classification and comparatively
enhanced the importance of attributes such as age, income,
and student, etc. in classification. It well solves the problem
that ID3 algorithm tends to take attributes with many values
and it can obtain more reasonable and effective rules.

V. CONCLUSION

In this paper, an improved ID3 algorithm is presented to
overcome deficiency of general ID3 algorithm which tends
to take attributes with many values. The presented algorithm
makes the constructed decision tree more clear and
understandable. Because it needs to compute the relation
degree function value for each attribute based on ID3
algorithm, it unavoidably increases computational
complexity. But with the rapid development of computer
technology, the operating speed of computer gets faster and
faster, the increased computational complexity can be
neglected. Generally speaking, the improved ID3 algorithm
takes the advantages of ID3 and AF algorithms and
overcomes their disadvantages. Experiment results show that
the improved ID3 can generate more optimal decision tree
than general ID3 algorithm.

REFERENCES

[1]. I. H. Witten, E. Frank, “Data Mining Practical Machine
 knowledge engineering [M]”. Nanjing: Nanjing
[4]. M. Zhu, “Data Mining [M]”, Hefei: China University of
[5]. A. P. Engelbrecht., “A new pruning heuristic based on
 variance analysis of sensitivity information [J]”. IEEE
 Trans on Neural Networks, Volume-12 Issue-06, Page
 classification problem [J]”, IEEE Trans on Neural

[7]. X. J. Li, P. Wang, “Rule extraction based on data dimensionality reduction using RBF neural networks”

BIOGRAPHY

M. Jayakameswaraiah, Received his Master of Computer Applications Degree from Sri Venkateswara University, Tirupati, Andhrapradesh, INDIA in 2009 and Currently Pursuing Ph.D in Computer Science from Sri Venkateswara University, Tirupati, Andhrapradesh, INDIA. The Research fields of interest are Data Mining, Cloud Computing, Software Engineering and Data Base Management System etc. E-Mail: mjayakameswaraiah@gmail.com

Prof.S.Ramakrishna, Professor in Department of Computer Science, Sri Venkateswara University, Tirupati, Andhrapradesh, India. HisAreas of interest include Data Mining, Software Engineering, Data Base Management System, Image Processing and Machine learning etc. E-Mail: drsramakrishna@yahoo.com