

 © 2019, IJCSE All Rights Reserved 57

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Enhancement in Software Reliability Testing and Analysis

P. N. Moharil
1*

, S. Jena
2
, V.M. Thakare

3

1
Department Computer Science, Research scholar, SGBA University, Amravati, India

2
Departments of CSE&A, SUIIT, Sambalpur University, Odessa, India

3
Departments of CS&E, SGBA University, Amravati, India

*Corresponding Author: pmohril@gmail.com, Tel.: 9421382386

DOI: https://doi.org/10.26438/ijcse/v7i5.5764 | Available online at: www.ijcseonline.org

Accepted: 08/May/2019, Published: 31/May/2019

Abstract— Reliability of software is an important factor of today’s software industry. The techniques involved in the

designing, testing & evaluation of a software system is called as software reliability engineering. The increasing demand for

the reliability of software products need to be estimated and the estimation of such software systems in reliability engineering

aspects become more critical for large scale projects. The ability of a system to perform system required operations or

functions under the given condition for a specified period of time is called the reliability of the system. Software reliability is

described as the probability of failure-free software operation for a given period of time in assign environment. This paper

proposes an algorithmic design of reliability analysis model for predicting quantitative & qualitative analysis of software

reliability by using probability theory & statistical analysis with a set of techniques and models. Reliability of software is a

squeeze with the prevention of errors, faults finding or detection of faults & removal. Reliability of hardware is not predicted

with probabilistic functions where the reliability of software is measured of probabilistic function with the notion of time.

Keywords — Software Reliability, Reliability analysis, reliability growth model performance testing

I. INTRODUCTION

Software reliability is the key factor of software quality with

multidimensional property counting other aspects such as

usability, availability, capability & maintainability. Software

reliability predicts the quantitative & qualitative analysis of

software by using probability theory & statistical analysis

with a set of techniques and models. Software reliability

testing becomes an essential factor of any software to

improve the performance of software through assessment of

the reliability of the software product & software

development life cycle. Conclusively testing reliability of

software becomes an important aspect. Reliability testing is

performed for removal of defects and fault findings before

system deployment. Software failures are different from

hardware failures. Software failures are measured or

estimated using models. Software reliability model

determines the general form of the dependencies of the

failure process on the principal aspects which affects it [1].

The aspects are fault detection, fault introduction, fault

recovery, removal & operational environment. The fault

prediction technique performs the evaluation for reliability,

which model & measures the reliability of the system during

its operations. Reliability of software is a squeeze with the

prevention of errors, faults finding or detection of faults &

removal. It remains a critical problem because there is no

complete solution to the nature of software & there is no

clear idea about what aspects are related to software

reliability. Reliability metrics are used to bring out the

reliability to the software product. Depending upon the type

of system & the requirements of the application fields the

selection of reliability metrics used [2].

In this paper, an algorithmic design of reliability analysis

model is presented for software reliability analysis and

performance testing of web applications. The paper is

organized as follows. In section II statistical or mathematical

reliability models are described. Section III describes the

reliability measurement. Section IV. Define an algorithmic

design of software reliability analysis model. Section V

shows the implementation of software reliability growth

model using SMERFs tool. Section VI shows the results and

discussion. Section VII. Define conclusion & research work

with future directions.

II. RELATED WORK

Software reliability models are statistical models used to

make predictions about a software system's failure rate and

given the failure history of the system within a given time

period [3]. These models make assumptions about the fault

detecting and removal process. These assumptions determine

the form of the model and the meaning of the model's

parameters. These model are categorized into two categories

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 58

 Input domain reliability models (IDRMs)

 Time domain software reliability growth models

(SRGMs)

 Input domain reliability model(IDRMs)

 IDRMs is also called a fault seeding model, where the

number of indigenous and seeded faults is counted at the

time of testing and the number of indigenous faults and the

reliability of the software are estimated.

• Nelson model

In this model, the reliability of software is measured by

executing the software for a sample of N inputs. The N

inputs are randomly selected from the input domain. The

randomized sampling of N input is performed through either

probability distribution or simple through user input

distribution. Where R has estimated the reliability

 (1)

Where,

 R = is the reliability

 n = is the number of input

 Time domain software reliability growth models

(SRGMs)

1. Jelinski-Moranda Model

 This is mostly used software reliability estimating the

model. While performing reliability testing number of

independent faults are considered. During the testing process,

new defect or faults are not introduced until the current fault

is removed from the test. It calculates software failure rate,

failure rate calculated is time between &

failure is given by

 (2)

Where,

 Φ = is proportionality constant

 t = failure rate

 Ν = number of independent faults

2. Goel and Okumoto Debugging Model

In this model, the number of faults in the system at the time t,

X (t), is treated as a Markov process whose transaction

probability is governed by the probability of testing. The

time between the transitions of X () is taken to be expo-

nentially distributed with rates dependent on the current fault

content of the system. The hazard function during the

interval between the and the failure is given by the

function:

 (3)

Where

 N = is the initial fault content of the system

 p = is the probability of imperfect debugging

 ƛ = is the failure rate per fault

3. Littlewood-Verrall Bayesian Model

In this model, the times between failures are assumed to

follow an exponential distribution but the parameters of this

distribution are treated as a random variable with a gamma

distribution that is:

 (4)

Where,

 ƛ= is random variables

 t = is failure rate

 F= failures

4. Musa Execution Time Model

In this model, the reliability of software is analyzed based on

execution time. The hazard function for this model is

provided as:

 (5)

Where,

 τ = is the execution time

 f = is the linear execution frequency

 ϴ = is a proportionally constant fault exposure

 ratio

 nc = is the corrected number of faults

5. Goel-Okumoto NHPP Model

It is assumed that at random interval software system is

subject to failures due to the faults in the present system. Let

N (t) is the cumulative number of failures identified in time t

then N (t) can be modeled as the NHPP model for the

following.

 (6)

 (7)

 (8)

Where,

 m (t) = is the expected number of failures

 ƛ (t) = observed by time t,

 a = is the expected number of failures observed

 b = is the fault detection rate per fault.

In this case, the number of faults to be identified is treated as

a random variable whose values depend on the test factor [4].

III. RELIABILITY MEASUREMENT

Depending upon the nature of the system under study

substantially specified time varies, as the reliability is a

function of time. When the system is expected to operate

without interruptions high reliability should be required. The

predicted probability of the system to operate without failure

is the reliability of the software [5]. Reliability of the

system at time t is the probability that the system operates

without defects in the interval [0, specifies that the system

was achieving appropriate at time 0. For example, when

system supposes to do some work within a short period of

time, time is specified with units such as milliseconds,

seconds & minutes.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 59

To determine the adequate reliability of the system one

should depend on the concepts related to the software

application. The failure of the system can be declared in the

form of probability. Thus, it specifies that the software

reliability bet on the concepts of the probability theory. The

probability theory contributes to the basics of software

reliability & grants comparisons among the system. It also

provides fundamental logic for enhancements of the defect

rates, which will occur during the application life cycle [6].

A system may be required to perform various functions, each

of which has different reliability level. In addition, in a

different time, the software application can have a different

probability to perform required functions from the user under

declared conditions. Thus, reliability represents the

probability of the system. It is defined as the probability that

a product will perform a required function without failure for

a stated period of time [7]. In other words, it is stated that it

is a measure of how long it takes for a network (or a system)

to fail.

Mathematically, reliability is the probability that a

system be successful in the time interval: [0 -]: A failure

rate, F, specifies the failure frequency in terms of failures per

unit time.

 (9)

Where,

 ƛ = failure rate

Example 1: Assume that there are 40 units which operated

for 1000 hours on test and 2 of them failed. Then the failure

rate (ƛ) will be

Before calculating the reliability, let’s take a look at an

example first which is going to figure out build the instinct

Example

 (10)

 Where,

 Probability failure

Let’s say if there are 40 products operated for 1000 hrs in a

test and 2 of them failed, then the probability of failure of the

component in 1000 hrs is:

 (11)

Where

 PS = Probability of success

And the probability of success for the component in 1000hrs,

thus, the Reliability is the probability of no failure within a

given operating period.

 (12)

 (13)

Thus it is specified that probability of success P(S) is the

reliability,

 (14)

The cumulative distribution function which specifies the

probability of failure by time t, If it subtracts that from 1, it

will specify the use of p the probability of success of a

component by time which is Reliability [8].

 (15)

Where

R(t) = Reliability & probability of a unit failing by the

 time t from

F (t) = probability

(1-F (t)) = remaining probability

F (t) = probability, so the remaining probability (1-F (t))

gives us the probability of it’s not failing by the time .

Reliability is the probability of no failure within a specified

function period of time.

IV. ALGORITHMIC DESIGN OF SOFTWARE

RELIABILITY ANALYSIS MODEL

This algorithmic design specifies the reliability measurement

process, algorithm describes that the software is

quantitatively determined by a study of failures & failure

hardness, also by characterizing reliability objectives, & by

determining balance among key quality objectives such as

reliability, deployment of software, cost & estimation of time

[9].

 Step 1: Determine reliability objectives

 Step 2: Perform system test

 Step 3: Gathering of failure data

 Step 4: Identifying relevant reliability measurement

 model

 Step 5: Choose perfect reliability testing tool

 Step 6: Calculate the reliability of the current

 product

 Step 7: Verify the test for reliability

 Step 8: Start deployment

Step 1: Determine reliability objectives

The development team has to determine software quality;

quality of the software is determined by studying a number

of failures & hardness of failures. Characterize the reliability

objectives, by determining balance among key qualities of

objectives such as reliability, delivery, time, cost, date, &

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 60

environment. Tester team also has to determine objectives

which are used to manage resources & guide them in design

implementation & testing of software

Step 2: Perform system test

The system is configured with the software, hardware &

network details. Unit testing & system testing is performed

before the reliability test. System capacity and scalability are

measured with the workload, where workload

characterization is performed for reliability assessment & to

identify the number of failures.

Step 3: Gathering of failure data

The development team has to make a collection of a number

of failures that occur from the software, hardware &

network. Identified collection of such failures forwarded for

reliability testing. Before performing reliability test verify

and categories collection of failures according to the type of

failure. Software reliability parameters should be

concentrated while categorizing the number of faults or

failures.

Step 4: Identifying relevant reliability measurement

model

In reliability measurement process software reliability

models are used to measure the quality of software. In this

model fault or error detection & fault density of software get

identified. There are various models available for reliability

test which predicts the software reliability from the test data.

These models show a relationship between fault detection

data and know mathematical functions such as logarithmic or

exponential functions. Choose the appropriate software

reliability measurement model among existing models.

 Jelinski-Moranda Model:-This is a continuous time-

independent distributed inter failure time and identical

error behavior model.

 Goel-Okumoto Model: This is a Nonhomogeneous

Poisson process model, which describes the situation that

software failure intensity increases slightly at the start and

then begins to decrease.

 Musa-Okumoto Model: In this model observation made

on the reduction in failure rate resulting from repair

action.

 Yamada Delayed S-Shaped Model: This is a

modification of the non-homogeneous Poisson process

to obtain an S-Shaped curve for the cumulative number

of failures detected such that the failure rate initially

increases and later decreases.

Step 5: Choose perfect reliability testing tool

Various software reliability testing tools are available for

reliability test and growth of reliability. These tools detect

and identify the reliability function, failure rate, mean time to

failure, median time to failure and the model parameters for

each model and help in fault detection and fixing the bugs

[10]. Details of available tools are described below:

1. AT&T (AT&T Software Reliability Engineering

Toolkit) executes Musa basic and Musa-Okumoto

software reliability models and can be applied for both

time-domain and interval-domain failure datasets for

predicting software reliability.

2. SMERFS (Statistical Modeling and Estimation of

Reliability Functions for Software) designed by

William Farr (1982) for estimating and predicting the

reliability of software during the testing phase and it

uses failure count information to make reliability

predictions.

3. SRMP (Statistical Reliability and Modeling Programs)

developed by the reliability and statistical consultant in

1988. It is a command-line interface tool, where the

parameters are estimated using Maximum Likelihood

Estimation (MLE) method in order to provide the

reliability information such as failure rate, mean time to

failure, the median time to failure, etc.

4. Sorel (Software Reliability Program) tool developed by

Lab of The National Center for Scientific Research,

France in 1991. It has the ability of testing and

analyzing the data for making predictions with better

accuracy and allows various models to accept both

time-domain and interval-domain input data which can

be applied for predicting software reliability growth.

5. SARA (Software Assurance Reliability Automation) -

Tool incorporates reliability growth model metrics and

design code metrics for analyzing the software

applicable to time between failure data.

6. CASRE (Computer-Aided Software Reliability

Estimation) - developed by Jet Propulsion Laboratories

in 1993. It is a user-friendly tool with GUI interface

and is capable to customize the user’s model using in-

build models and can be applied to time-domain failure

datasets.

Step 6: Calculate the reliability of the current product

Using the appropriate tool and reliability growth model

perform the calculation of the reliability of the current

product. Find out the defects or faults and try to recover

them. If fault found and achieves the reliability target then

forward it to verification & for the deployment of the product

[13]. It doesn’t get satisfied with the results then continue the

processes until the target get achieved.

Step 7: Verify the test for reliability

Through this activity verify that a certain reliability level has

been achieved or not and finally reliability can be analyzed in

the field to verify the reliability engineering effort & to

provide feedback for product & process improvement [14].

Step 8: Start deployment

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 61

A reliability model calculates, from failures data collected

during system testing such as failure report, data & test time.

Finally, the reliability of the product is predicted and ready

for use.

These reliability estimates can provide the information useful

for product quality management and the reliability of the

product at the end of system testing [11]. The amount of

additional test time is required to reach the products

reliability objective and reliability growth as a result of

testing & predicted reliability [12].

V. SOFTWARE RELIABILITY GROWTH MODEL

Software reliability growth model is used for software

reliability analysis using the SMERF Tool. SMERFS

(Statistical modelling and estimation of reliability functions

for software)

This tool is used for reliability analysis. This is a widely used

and an accepted software application for evaluation of test

data for checking failure rate and fault detection rate forecast.

The inputs given to the SMERFS are the collection of values

of the time between the detection of defects or the number of

defects detected per time period. The model uses the

maximum probability method or least squares methods to

approximation the parameters used for one or more of these

models. This model’s output comprises the parameter

estimates and a measure of the goodness-of-fit and predicted

values using the chi-squared distribution [15].

1. Parameter estimation method, here are two parameter

estimation methods maximum-likelihood (ML) and least-

squares (LS). Least square requires less computation time to

estimate parameters than the maximum likelihood. Where the

maximum likelihood will produce valid parameter

estimates in the minimum time period

2. Collection of failure data over which the models will be

applied

3. Number of stages used in the model for the prediction of

future data

The example uses the statistical model Jelinski-Moranda

Model to predict the reliability of software. This model

makes assumptions about the fault detection correction

process, the assumption is listed below:

a. The rate of fault detection is proportional to the current

fault content of the program.

b. All failures are equally likely to occur and are

independent of each other.

c. Each failure is of the same order of severity as any

other failure.

d. The failure rate remains constant over the interval

between failure occurrences.

e. The faults are corrected instantaneously without the

introduction of new faults into the program.

From these assumptions, the instantaneous failure rate will

be explained in

 (16)

If we represent the time between the i 'th and the (i-1) th

failure by the random variable Xi, from assumption (d) we

can see that Xi has an exponential distribution, f(Xi), as

shown below:

 (17)

Using assumption (b), the joint density of all of the Xi's is:

(18)

This is the Likelihood function, which can be utilized to

compute estimates for the parameters a, nd N [16].

The partial derivative of the log-likelihood function is taken

with respect to each of the two parameters, set these

equations to 0 and then solve. It gives the estimated values,
and N, for the model parameters N & :

 (19)

Then it necessary to find the value of N ˆ numerically from

the following equation, and then utilize it for solving the

previous equation for :

 (20)

Thus i failures are observed, the predicted time to the next

failure, MTBF, is given by:

 (21)

It can also derive a set of least-squares estimators for the

model parameters. In this case, it tries to minimize the

following quantity, which is the sum of the squared

differences between the observed xi and their mean values,

the MTBF:

 (22)

As with maximum likelihood estimation, we take the partial

derivatives of the equation with respect to each of the model

parameters, yielding the two following equations that we

then set to 0 and solve:

 (23)

and

 (24)

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 62

The resulting estimate for MTBF has the same as the

obtained from maximum likelihood estimation [17].

Online Business Communication System, The Online

Business Communication System project at New Software

solutions Software Company. The project consists of one

unit-manager, one user interface software engineer and a

team of software testers. There are four phases in the SDLC

process of the project which can be described as Weeks

analysis, Design, Coding, and Testing.

The example uses the statistical model Jelinski-Moranda

Model to predict the reliability of software. It uses two

parameter estimation methods maximum-likelihood (ML)

and least-squares (LS). Least square requires less

computation time to estimate parameters than the maximum

likelihood. Where the maximum likelihood will produce

valid parameter estimates in the minimum time period and

the Collection of failure data over which the models will be

applied. The number of stages used in the model for the

prediction of future data.

Data set: Three fields are considered for fault finding and

fault reduction factors shown in table 8.

Table

Data

Set

Fault finding and fault reduction factors

Field 1
Testing time

(in weeks)

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15

Field2 Failures

2 1 12 3 4 3 5 6 7 8 9 4 3 11

13 14 16 17 12

 Field3
Cumulative

failures

2 3 4 7 9 11 12 13 15 17 19

20 21 23 25 27

For a period of 10 weeks, the data was collected meanwhile

the testing was started and stopped many times. Errors

detection is broken down into subcategories to help the

development and testing team to sort and solve the most

difficult modification requests. These subcategories are

referred to as the severity levels depending on the nature of

the defect with 3 being the minor problem, with 2 being a

major problem and 1 being with the most critical problem.

Table 9 shows the data set maps into the week, consists of

three types of errors: seve.1, seve.2, and seve.3 the

observation time (OT) in a week and the number of errors

detected per week are presented as follows.

Table 9 shows business communication failure data

Data

Set

Observation time (OT) (In weeks)

Time

(in weeks)
Seve.1 Seve.2

Seve.3

1 4 3 10

2 1 3 6

3 2 5 3

4 3 1 5

5 1 3 6

6 0 7 11

Data

Set

Observation time (OT) (In weeks)

Time

(in weeks)
Seve.1 Seve.2

Seve.3

1 4 3 10

7 1 1 8

8 0 5 9

9 2 1 10

10 1 1 4

Table9. Shows the data set maps into the week, consists of

three types of errors: seve.1, seve.2, and seve.3

Where, Seve. = Severer problems, OT = Observation time

Figure1 shows the statistical for software time models

In the execution summary software data statistics are shown

in figure 1with multiple fields such as a number of entries, an

average of the data-77.610, a median of the data-81.709,

standard deviation- 15.047, variance- 226.27 and skewness- -

0.277 and Kurtosis- -1.553. The model applicability analysis

defines default ranges as a starting point and ending point

and with four different modes such as Accuracy, Bias, Noise,

and Trend.

The Littlewood & Verrall Linear model and Littlewood &

Verrall quadratic models the computed initial estimates for

the maximum likelihood execution are Beta 0 (B0) and Beta

1 (B1). Where B0-50.9993 & B1-4.8393 and for a quadratic

model, it is B0-62.0121 & B1-0.4052. The executive

summary for software model shows Hazrate-0.0175, CIF-

0.0098 and IIF-0.0187. After execution of summary, it is

ready to predict the data plot with the number of units and

severity levels using all statistical models.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 63

Figure 2 shows the graphical representation of time and

failures

In the above figure, the predicted software data plot shows

the time between failure data for software time models. All

the models are represented with different colors with a

number of failures and time (in weeks). Each statistical

model execution using a maximum likelihood method used

to plot the number of failures.

Figure 3 shows the statistics of number cumulative

failures and statistical models using the least square

method.

In the above figure, the predicted software data plot shows

the number of cumulative failures and the time between

failure data for software time models. The least square

method used to plot the number of failures in weeks. The

software data statistics are presented with a number of entries

such as the average of the data-77.610, a median of the data-

81.709, standard deviation- 15.047, The statistics also show

the variance- 226.27 and skewness- -0.277 and Kurtosis- -

1.553.

Figure 4 shows testing results in graphical representation

time in weeks and the number of cumulative failures

occur

The above figure shows the predicted software data plot

using three statistical models JM model, Littlewood &Verrall

linear model, and Littlewood & Verrall quadratic model.

Each model counts the number of failures in using statistical

model formula and represents it. Each model output is shown

with separate color with a number of failures and time (in

weeks). Here the Least square execution method is used to

plot the number of failures.

Figure 5 shows statistical analysis using Jelinski-

Moranda model

The software reliability growth model Jelinski-Moranda

model is used to count the number of failures with maximum

likelihood execution method. The above figure shows the

executive summary for the JM model.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 64

Figure 6 shows the statistical representation using

Jelinski-Moranda model

Figure 6 shows the predicted software data plot using the

software reliability growth model Jelinski-Moranda model.

The number of failures is predicted with time (weeks). The

Jelinski- Moranda model is a statistical model used with

maximum likelihood execution method.

VI. RESULTS AND DISCUSSION

In this paper, an algorithmic design introduced describes the

software reliability testing process for estimating and

measuring the reliability of software. The implementation

using SMERFs tool specifies that the analytical models are

useful in estimating & monitoring. The case study of

Business communication system shows the reliability results

with fault reduction factor and number of failure counts. It is

viewed as a measure of estimation of software reliability &

to enhance the quality of software.

VII. CONCLUSION AND FUTURE SCOPE

Software reliability is a measuring technique for identifying

the defects that cause software failures in which software

behavior is different from the specified behavior in a defined

environment with a fixed time. In this paper, various

software reliability models are reviewed and statistical

analysis is performed. The algorithm introduced describes

the software reliability testing process for estimating and

measuring the reliability of software. It specifies that the

analytical models are useful in estimating & monitoring and

it is viewed as a measure of estimation of software reliability

& to enhance the quality of software.

ACKNOWLEDGMENT

REFERENCES

[1] Sudsanguan Nagamsuriyaroj, Pak Rattidham, “Performance

Evaluation of Load balanced Web”, IEEE 978-6- 7695- 4338 March

2011.

[2] M. Andreolini, M. Colajanni, and M. Pietri, “A scalable architecture

for real-time monitoring of large information systems,” in IEEE

Second symposium on network cloud computing & applications, 2012.
[3] Guanyin Zhao, Kaigui Wu, Tao Li, “Two-Dimensional Software

Reliability Assessment with Multiple Change-points”, International
Journal of Digital Content Technology and its Applications (JDCTA),

Volume, DOI:10.4156/jdcta.vol6.issue13.60 No.13, July 2012.

[4] Manohar Singh, “Software Reliability Testing Tools: An Overview
and Comparison”, International Journal Of Engineering And

Computer Science ISSN: 2319-7242 Volume 5 Issue, Page No.

18886-18891, 11 Nov. 2016.
[5] Shiho Hayashida, Shinji Inoue, and Shigeru Yamada, “Software

reliability assessment using exponential-type change-point hazard rate

model”, International Journal of Reliability, Quality and Safety
Engineering Vol. 21, No. 4, 1450019 (12 pages), World Scientific

Publishing Company, DOI: 0.1142/S0218539314500193 (2014).

[6] G. Gayathry, and R. Thirumalai Selvi, “Classification of Software
Reliability Models to Improve the Reliability of Software”, Indian

Journal of Science and Technology, Volume 29, DOI: 10.17485 /

v8i29/85287, November 2015.
[7] Durga Patel, Pallavi, “Software Reliability: Models”, International

Journal of Computer Applications (0975 – 8887) Volume 152 – No.9,

October 2016.
[8] Razeef Mohd, Mohsin Nazir, “Software Reliability Growth Models:

Overview and Applications”, Journal of Emerging Trends in

Computing and Information Sciences, VOL. 3, NO. 9, ISSN 2079-
8407, SEP 2012.

[9] Mao Chengyong, LI Qiuying, “A testing-coverage software reliability

growth model considering the randomness of the field environment”,
IEEE International Conference on Software Quality, Reliability and

Security Companion, 978-1-5090-3713-1/2016.

[10] Guoxin Su, David S. Rosenblum, “Reliability of Run-Time Quality-
of- Service Evaluation using Parametric Model Checking”,

IEEE/ACM 38th IEEE International Conference on Software

Engineering, ICSE ’16, Austin, TX, USA, ACM. ISBN 978-1-4503-
3900 - May 14-22, 2016.

[11] M.Ravichandran and A.V. Ramani, “A Methodology for Measuring

Web Software Reliability”, Int. J. on Recent Trends in Engineering
and Technology, ACEEE DOI: 01.IJRTET.7.1.70 Vol. 7, No. 1,

July 2012

[12] Heiko Koziolek, Bastian Schlich, Steffen Becker, Michael Hauck,
“Performance and reliability prediction for evolving service-orient

software systems”, Empir Software Eng 18:746–790 DOI 10.1007/ s1

0664-012-9213-0-2013.
[13] Ian Andrusiak and Qusay H. Mahmoud, “A Reliability-Aware

Framework for Service-Based Software Development”, IEEE 30th

Canadian Conference on Electrical and Computer Engineering
(CCECE), 978-1-5090-5538-8/2017.

[14] Suhas Honore, Santanu Kumar Rath, “A Web Service Reliability

Prediction using HMM and Fuzzy Logic Models”, 6th International
Conference On Advances In Computing & Communications, Cochin,

India. ICACC 2016, 6-8, September 2016.

[15] D.Swamy doss, Dr. Kadhar Nawaz, “Enhanced version of growth
model in web-based software reliability engineering”, Journal of

Global Research in Computer Science, Volume 2, No. 12, December

2011.

[16] Divya Bindal, “Estimating Reliability of Web Application Using

Markov Model”, International Journal of Advanced Research in
Computer Science and Software Engineering, IJARCSSE Volume 3,

Issue 6, June 2013.

[17] Md Umar Khan and Dr. T.V. Rao, “Web application’s reliability
improvement through architectural patterns”, International Journal of

Web & Semantic Technology (IJWesT) Vol.5, No.3, July 2014.

[18] Gurpreet Kaur, Kailash Bahl, “Software Reliability, Metrics,
Reliability Improvement Using Agile Process”, IJISET -

International Journal of Innovative Science, Engineering &

Technology, Vol. 1 Issue 3, May 2014.

