Scse International Journal of Computer Sciences and Engineering Open Access

Survey Paper

Volume-5, Issue-1

A Survey on Dynamic Resource Allocation in MIMO Heterogeneous Cognitive Radio Networks based on Priority Scheduling

S.Tamilarasan^{1*}, P.Kumar²

^{1*}Research Scholar, CITE, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India. ²Assistant Professor, CITE, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.

Available online at: www.ijcseonline.org

Received:21/12/2016	Revised: 03/01/2017	Accepted: 19/01/2017	Published: 31/01/2017	
Abstract— In cognitive radio	Abstract— In cognitive radio networks (CRN) an intelligent spectrum allocation is an immense subjects because of its deficiency of			
spectrum demand. Resource	es in CRN would be allocated ba	sed on dynamic access methods with	respected to sensed radio	
environment. A principal res	search trial is that how would be al	located or assigned presented unused spe	ctrum to unlicensed users.	
In this paper we provide a comprehensive survey of dynamic resource allocation and priority scheduling in MIMO-CRN. The				
appropriate portion of unmov	ving recurrence range existing toget	her intellectual radios while amplifying all	out transmission capacity	
utilization what's more, redu	icing impedance is required for the	e dynamic range use in MIMO-CRN. 7	The system for established	

extent segment came to achievement to less range utilization over the entire range. In this paper we presented the different

Keywords-Cognitive Radio; Dynamic Scheduling; Priority Queue; Heterogenetive Services, MIMO

approaches used for dynamic resource allocation and scheduling in heterogeneous MIMO-CRN.

I. INTRODUCTION

In modern centuries, the cognitive radio network is an emerging innovation. It gives an incredible arrangement and enhance the powerful range use by secondary users when primary users in idle [1]. Primary Users (PU) (licensed user) utilized authorized recurrence range for exceptional applications. For the most part, Secondary Users (SU) (unlicensed users) utilizes more spectrum usage contrasted with PU [2]. CR is a scholarly plan which would insight its surroundings and change range. And furthermore makes a shrewd correspondence framework like transmitting and accepting signs. CR distinguished what channel is being occupied or not and exchanged to unused channels. These strategies lessened impedance with different clients and make it best utilization of offered radio recurrence range. [3].

CR is an intelligent wireless communication system which should be sense their environment and dynamically adjust their communication signal, channel access method, effective use of spectrum, and required protocols for good network and application routine [1]. CR makes intellectual communication such as transmitting and receiving, and also recognized which channels are used and not and transfer to unused channels. This method minimizing interference with other users and make it best use of existing radio frequency band. We can formulate efficient utilization of the CR spectrum by allocate a secondary user (SU) to utilize a licensed frequency band when the primary user (PU) is absent [2]. So the detection of spectrum hole is significant as shown in Figure 1.

Figure 1. Spectrum hole technology[2]

In this paper, we presents as follows: Section I: Introduction, Section II: MIMO (Multi-Input Multi-Output), Section III comparative analysis and section: IV conclusion of this article.

II. MIMO (MULTI-INPUT MULTI-OUTPUT)

MIMO is an intelligent wireless communication system and makes the use of multiple transmitter and receiver antennas. MIMO system transmits multiple data on the same channel to increase the wireless data rate, transmission reliability and rang. MIMO has the advantages like independent and parallel communication with multiple channels [3].

MIMO-OFDM combines the advantages of both MIMO and OFDM features. MIMO combines multiple input multiple output technologies, which multiplies capacity by transmitting

different signals over multiple antennas, and OFDM (orthogonal frequency division multiplexing) splits a radio channel into a huge number of closely spaced sub-channels to deliver more reliable communication at great speed. MIMO-OFDM is a powerful combination because MIMO alone does not attempt to mitigate multipath transmission and OFDM avoids the need for signal equalization. MIMO-OFDM can achieve very high spectral efficiency in any given network of operation [3].

III. COMPARATIVE ANALYSIS

Years	Algorithm	Result
of	Used(Methodology)	
Public		
2014	Distributed Algorithm	Achieved significant
[3]	Distributed Augoritania	improvement of the
		network throughput while
		reducing the delay.
		Future Work
		To develop a new
		algorithm for MIMO with
		CR to improve the
2016	Dynamic Resource	Achieved 26% of
[4]	Allocation Based Priority	efficient network
	Scheduling (DRAPBS)	throughput with
		minimum delay.
		Future Work
		We can use DRAPBS
		algorithm with artificial
		intelligent and human
		qualities, to enhance the
		performance during
		handoff and channel
2016	Predictive Channel Sensing	Achieved significant
[5]	Algorithm with tailed PU	reduction in channel
	OFF time distribution	switches and power
	approach	consumption.
		if ON-OFF time
		distributions of the PUs
		are accurately modelled
		Future Work
		To develop CRN-MAC
		algorithm to improve the
		channel occupancy
		optimal network
		performance.
2016	Adaptive win-shift lose-	Maximizes the total
[0]	randomize (WSLR)	network payoff and fairness among the
	angoritanii.	Cognitive Nodes
		Reduced collision among
		Cognitive Nodes.
		Requires a small number
		find a channel free of PU

Vol.-5(1), Jan 2017, E-ISSN: 2347-2693

2016	Cognitive radio scheme	activity. Improved the resource
[8]	based on quality of	assignment in wireless
	experience (QoE).	communication.
2016	multi-user greedy algorithm	Achieved Complete
[9]		bandwidth with minimum
		power along with
		maximum data rate.
		Future Work To develop an algorithm
		for multi-secondary user
		communication system
		and achieve significant
2016	Unique model to assign	Achieved significant
[12]	priorities to the secondary	network throughput
[12]	users based on the required	notioni unoughput
	Quality of Service and on	
	the interference delay to	
	secondary users	
2012	Distributed system for	Maintained the network
[13]	optimal resource allocation	stability
	without exchanging	
	spectrum dynamics	
	nodes.	
[14]	Two level Stackelberg game	Achieved better energy
2016	model	consumption.
2016 [15]	Allocation algorithm is	transmission
[15]	proposed.	between reliable nodes
	I I	and good network
		performance.
		Future Work
		To develop effective
		channel sensing and
		scheduling algorithm for
		CRN
		ciut.
2016	Proportional Fair	Proposed technique
[16]	Scheduling (PFS) based	reduces the energy
	resource allocation.	interface
	Fuzzy Logic Decision	internuce.
	(FCD) model is used for	
	selecting the transmit power	
2016	Proposed Centralized	Better transmission
[17]	algorithm to provide	power allocation is
	efficient transmission power	achieved.
	for every secondary users in	Dem muml (1
	network.	improved the
	Proposed Dynamical system	performance by 46% on
	approach is used to model	average.
	system behaviour in existing	Each manage 1 - 1 - C
	forecasting engine based on	Each proposed solutions
	deep neural network is	performance.
	proposed	•
		Future Work
		To develop an algorithm
		to achieve best

Vol.-5(1), Jan 2017, E-ISSN: 2347-2693

		performance of entire
		network using machine learning techniques.
		Higher level of sophistication and self- adaptability technique
		will support to reduce the network complexity.
2016 [18]	Proposed benefit-fairness algorithm based on weighted-fair Queuing model.	Proposed algorithm provided the better efficiency and fairness at priority level.
		Future Work More pragmatic algorithm can be devised using several other combination of
		scheduling schemes like, Shortest Job First (SJF) with priority or SJF with weighted fair queue, or round-robin with SJF etc.
		Grouping of tasks can be done based on complexity of task, or group by location etc., before resource allocation.
2015 [19]	QoS-Aware Tethering in a Heterogeneous Wireless Network using LTE and TV White Spaces (QTHN) is proposed to improve QoS for Constant Bit Rate (CBR) and Best Effort (BE) users.	The proposed QTHN reduced the significant numbers of blocked users and improved to increase the overall heterogeneous network performance.
2016 [20]	Stackelberg game exploiting the cognitive radio (CR) technology is proposed.	The proposed method can significantly improve the throughput of victim licensed nodes with slightly decreasing network total throughput.
2016 [21]	Multi-channel learning- based distributed sensing fusion mechanism (MC- LDS) is proposed.	The proposed scheme provided outperforms IEEE 802.22 recommended algorithms, i.e., the AND, OR and VOTING rules.
		Furthermore, MC-LDS should be integrated to boost the sensing performance in other promising technologies and standards such as White-Fi (IEEE
		802.11af WLANs) wireless personal area networks and ZigBee (IEEE 802.15 family), cognitive WiMAX (IEEE 802.16h) and the recent IEEE 1900.6b standard emerged to support spectrum databases using
		spectrum sensing information.

2016 [22]	They proposed analytical framework based on a pre- emptive repeat identical (PRI) M/G/1 queuing network model, which applicable for providing a service time distribution of both primary and secondary connections, multiple interruptions and transmission delay resulting from the appearance of primary connections.	Proposed system is achieved reasonable and optimal spectrum handoff strategy scheme achieved to maximize the energy efficiency during the whole data transmission process. And designing the admission control rule for the SU in cognitive radio networks.
2016 [23] 2016	Prioritized channel allocation (PCA) scheme is proposed.	Achieved better throughput and fairness in supporting SU prioritized traffic. Future Work Improved modelling of DSA for prioritized traffic considering dynamic spectrum fragmentation/defragment ation and improved spatial channel reuse based on the geolocation of Sus will be conducted.
[25]	to achieve power transmission between nodes in the network.	power allocation and channel gain during data transmission.
2016 [26]	They proposed Resource Allocation with heterogeneity concept to improve optimal solution in CRN.	Achieved optimal solutions such as the average data rate, throughput, and outage probability. And also achieved the overall performance of the network. Future Work To develop heuristics that must reach even less computational complexity, particularly for greater networks.
2010 [27]	They proposed Discrete Time Markov Chain (DTMC) model	Improved sensing accuracy and better time- bandwidth. And also maximize the throughput over the network.
2016 [28]	Preferable Channel List (PCL) algorithm is proposed to achieve best channel selection scenario.	The proposed algorithm will provide higher throughput and collision free access by secondary users. The channel selection is done on common control channel using single transceiver radio.
[29]	network resources based on	strategy performs

Vol.-5(1), Jan 2017, E-ISSN: 2347-2693

	the buffer sizes of the PUs	significantly better than
	and Sus in the uplink (UL)	other relevant resource
	and downlink (DL)	allocation techniques.
	directions.	
2013	They proposed a dynamic	The buffer mechanism
[30]	spectrum handoff scheme	can improve the channel
	with finite-size buffer	utilization considerably.
	queues	
2016	They proposed queuing	The proposed system
[31]	theory, markov chain and	achieved the performance
	The matrix-analytic Method	of the system is
	for calculating the	satisfactory when primary
	the network	the network
	the network.	the network.
		The system consumption
		is 94.35% the average of
		the mean number of jobs
		in the system is 91, the
		mean waiting time of
		secondary users is 3.062
		ms and the average of
		mean response time is
		81.0 ms.
2012	Proposed a channel access	The proposed scheme
[32]	scheduling scheme that	achieved the QoS
	differentiates the quality-of-	differentiation among
	service (QoS) by assigning	competing SNs while
	priority values and provides	improving both the
	a certain level of fairness by	throughput and fairness
	taking the queue waiting	performance in CRNs
2014	time into consideration.	771 1 (
2014	Iney proposed two queue	The proposed system
[33]	bullered system at SUS to	throughput and fairmass
	throughput and overall	throughput and farmess.
	performance of CRN	
2015	They proposed routing and	Proposed algorithm
[34]	scheduling algorithm.	improved the throughput
(- j	6.6.	and delay performance by
		relaying packets through
		cable backhaul.
2015	They proposed orthogonal	The proposed distributed
[35]	space-time block coding and	algorithm provides a
	distributed algorithm at the	better improvement in the
	secondary users. Transmit	capacity performance of
	antenna selection algorithm	secondary users, thereby
	used for comparison	increasing the capacity of
2014	purpose.	the system.
2014	They proposed Two-stage	The proposed scheme
[30]	with combinatorial Austi-	improved the utilities of
	and Stackelberg Game in	niproved the utilities of
	spectrum Sharing (TACS)	owners enhance the
	algorithm	spectrum efficiency and
	angoritanin.	provide economic
		incentives for all users to
		participate in spectrum
		sharing.
2013	proposed a Distributed	Achieved significant
[37]	Consensus Algorithm to	increase of network
	address the problem of	capacity and spectrum
	distributed CCC allocation	efficiency
	in CRAHNs.	-
2016	Proposed an algorithm to	Proposed algorithm
[38]	divide the design problem	minimized the average
	into three sub-problems,	interference power
	which can be solved using	between PU and SU.

	the convex optimization methods.	Future Work To study robust transceiver design in the system over frequency selective fading channel.
2015 [39]	Proposed a novel cooperative sensing scheme with attack-aware capability in the presence of a malicious primary user emulation attack (PUEA).	Achieved significant performance improvement.
2015 [40]	Proposed a discrete time Markov chain (DTMC) and semi-Markov chain (SMC).	The proposed models are verified through various simulations and achieved good network performance.
		Future Work Future studies in this research area could include: (1) obtaining a closed-form formula for the mean sending rate of CR collecting sensors; (2) proposing a rate-based congestion control scheme for cognitive radio networks, (3) investigating on the optimality of rate-based congestion control schemes in CRNs and (4) studying the possible impacts of CR user mobility on the sending rate distribution of source nodes.
2016 [41]	 Proposed (1) a power-pricing model without game theory power-pricing model without game theory approach. (2) a non-cooperative game is applied to the proposed pricing model among the system users (i.e., PUs and SUs), to create balance between them. (3)Nash equilibrium algorithm. 	Proposed algorithm has maintained balance between the different goals of users. provided better utilization of the channels.
2016 [42]	Proposed an eigenvalue based spectrum sensing technique with double threshold system.	Proposed system achieved better detection Performance under noise uncertainty conditions compared to existing conventional Methods in the network.
2013 [43]	They proposed evolutionary game framework Proposed an entropy based coalition formation algorithm.	The proposed scheme can guarantee the detection probability at a low false alarm rate. Future Work Intend to jointly study the two problems of which

2012 [44]	A modified hybrid scheduling rule is proposed	action to take and which channel to sense as a secondary user can want to decide which action to take based on the channel it desires to sense. Proposed algorithm achieved fairness, and the optimal growth rate for
2013 [45]	Proposed a very general scheduling model accomplishing goals such as making frequency, time slot, and data rate allocation to secondary users with possibly multiple antennas, in a heterogeneous multi- channel and multi-user scenario. And also propose a heuristic algorithm for our fair	the secondary throughput. The proposed system achieved a better performance in terms of both total throughput and fairness for varying number of secondary users, frequencies, antennas, and window size.
2013 [46]	Finite Rate of Innovation in a Cognitive Radio Network with centralized Spectrum Management based Spectrum Broker algorithm is proposed.	The proposed algorithm provides the collision probability are decreased by more than 90% by using the compressive sensing technique (FRI)
		Future Work To improve the performance in radio cognitive networks about different states and architectures. Cooperative and distributed architectures, are still of interest in this type of networks, but have limitations in terms of quality and speed of the signals involved, issues on which the compressed sensing can make significant contributions.
2013 [47]	They proposed the dual decomposition technique and The joint allocation of the resources in suboptimal low complexity algorithm.	The proposed system achieved a near-optimal performance with much less complexity. and network performance also improved because of deploying multiple antennas at the SUs.
2013 [48]	They proposed multi-SU resource allocation game with Nash bargaining solution (NBS) under the cognitive radio scenario (CR-MSU-NBS game, the energy efficient suboptimal resource allocation scheme for multi-SUs.	Proposed scheme achieved a good tradeoff between fairness and efficiency and outperforms the familiar distance-pairing schemes. Proposed NBS resource allocation scheme achieved a good performance in the system efficiency (33.4%) and fairness in

Vol.-5(1), Jan 2017, E-ISSN: 2347-2693

		the cognitive radio
		networks.
2012	They proposed the	The proposed scheme
[49]	Stackelberg equilibrium	should improve energy
	algorithm to achieves an	efficiency significantly in
	energy efficient resource	heterogeneous wireless
	allocation in heterogeneous	networks.
	CRN.	
2013	The proposed algorithm an	The proposed algorithm
[50]	efficient power distribution	might be achieved lower
	schemes and fast barrier	complexity and fairness.
	method	
2016	Adaptive Greedy Algorithm	Achieved a good network
[51]	is proposed.	performance.

IV. CONCLUSION

In this article we presented a comparative study and analysis of dynamic resource allocation in MIMO heterogeneous services in cognitive radio networks. In this literature survey we studied different technique used to achieve best performance over secondary networks, effective resource utilization, channel allocation throughput, delay; power consumption etc., each method provides better performance based on them approaches. In future we can develop an efficient priority scheduling and channel allocation algorithm for MIMO heterogeneous CRN to achieve a significant overall network performance like throughput, delay.

REFERENCES

- S.Tamilarasasan, Dr.P.Kumar, "A Servey on Dynamic Resource Allocation in Cognitive Radio Networks", International Journals of Computer Science and Engineering (IJCSE), volume: 4, Issue:7, E-ISSN: 2347-2693, Jul-2016, PP: 86-93.
- [2] S.Tamilarasan, Dr.P.Kumar, "Dynamic Resource Allocation in Cognitive Radio Networks-Priority Secheduling approach: Literature Survey", International Journals of Computer Science and Engineering (IJCSE), volume: 4, Issue:8, E-ISSN: 2347-2693, Aug-2016, PP:01-11.
- [3] C.Gao, S.Chu, X.Wang, "Distributed Scheduling in MIMO Empowered Cognitive Radio Ad Hoc Networks", IEEE Transactions On Mobile Computing, VOL. 13, NO. 7, July 2014, PP: 1456-1468.
- [4] Santhamurthy Tamilarasan, Kumar Parasuraman", Dynamic Resource Allocation and Priority Based Scheduling for Heterogeneous Services in Cognitive Radio Networks", International Journal of Intelligent Engineering & Systems (IJIES), Vol.9, No.3, 2016, PP: 127-136.
- [5] Senthilmurugan S, J. Ansari, P. Mahonen, "Channel Selection Algorithm for Cognitive Radio Networks with Heavy-Tailed Idle Times", arXiv:1607.04450v1 [cs.NI] 15 Jul 2016, PP: 1-14.
- [6] Z.Khan, J. J. Lehtomaki, L. A. DaSilva, E.Hossain, M. L.Aho, "Opportunistic Channel Selection by Cognitive Wireless Nodes Under Imperfect Observations and Limited Memory: A Repeated Game Model", IEEE Transactions On Mobile Computing, VOL. 15, NO. 1, January 2016, PP: 173-187.
- [7] H.B. Salameh, "Opportunistic Spectrum Sharing in Dynamic Access Networks: Deployment Challenges, Optimizations, Solutions, and Open Issues", arXiv:1605.02230v1 [cs.NI] 7 May 2016,

- [8] J.Raiyn, "A Cognitive Radio Scheme for Dynamic Resource Allocation Based On QoE", International Journal of Wireless & Mobile Networks (IJWMN) Vol. 8, No. 1, February 2016, PP: 1-10.
- [9] S. Taori, "Energy Efficient Resource Allocation in Cognitive Radio using LabVIEW", International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 5, Issue 2, February 2016, PP: 193-197.
- [10] R. Xie, F. R.Yu, H.Ji, "Dynamic Resource Allocation for Heterogeneous Services in Cognitive Radio Networks With Imperfect Channel Sensing", IEEE Transactions On Vehicular Technology, VOL. 61, NO. 2, February 2012, PP: 770-780.
- [11] B.S.Awoyemi, B.T.J.Maharaj, A.S.Alfa, "Solving resource allocation problems in cognitive radio networks: a survey", EURASIP Journal on Wireless Communications and Networking (2016) 2016:176 DOI10.1186/s13638-016-0673-6, PP: 1-14.
- [12] Dr.S.Tapaswi, Dr.R.S.Jadon, P.Shrma, "Dynamic Spectrum Allocation Technique with Reduced Noise in Cognitive Radio Networks", IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010, PP: 274-280
- [13] W.Wang,, K.G. Shin, W. Wang,, "Distributed Resource Allocation Based on Queue Balancing in Multihop Cognitive Radio Networks", IEEE/ACM Transactions On Networking, VOL.20, NO.3, june 2012, PP: 837-850.
- [14] Z. Shu, Y. Qian, Yaoqing, Yang, H.Sharif, "A Game Theoretic Approach for Energy Efficient Communications in Multi-hop Cognitive Radio Networks"
- [15] A.C.Sudhir, B.Prabhakar Rao, "Priority Based Resource Allocation for MIMO-Cooperative Cognitive Radio Networks", Journal of Scientific & Industrial Reaserch, Vol. 75, November 2016, PP: 667-670.
- [16] D.Ruby, M.Vijayalakshmi, "Fuzzy Based Resource Allocation for Cognitive Radio Relay Networks", Asian Journals of Technology 15 (7), 2016, PP: 1213-1222.
- [17] A.Mohamedou, A.Sali, B.Ali, M.Othman, "Dynamical Spectrum Sharing and Medium Access Control for Heterogeneous Cognitive Radio Networks", International Journal of Distributed Sensor Networks Volume 2016, PP: 1-15.
- [18] Dr. R.K. Chauhan, Dr. Ramesh Kait, "Dynamic Fair Priority Optimization Task Scheduling Algorithm in Cloud Computing: Concepts and Implementations", I. J. Computer Network and Information Security, 2016, 2, PP: 41-48.
- [19] G.Aldabbagh, S.Bakhsh, N.Akkar, S.Tahirc, H. Tabrizi, J.Cioffi, "QoS-Aware Tethering in a Heterogeneous Wireless Network using LTE and TV White Spaces", Computer Networks-81(2015), PP: 136-146.
- [20] S.Sun, N.Chen, T.Ran, J.Xiao, T.Tian, "A Stackelberg game spectrum sharing scheme in cognitive radio-based heterogeneous wireless sensor networks", Signal Processing, 126 (2016), PP: 18-26.
- [21] N.Tadayon, S.Aissa, "A Multi-Channel Spectrum Sensing Fusion Mechanism for Cognitive Radio Networks: Design and Application to IEEE 802.22 WRANs", IEEE Transactions On Cognitive Communications And Networking, January 2016, PP: 1-13.
- [22] X.Yang, X.Tan, L.Ye, L.Ma, "Spectrum Handoffs Based on Preemptive Repeat Priority Queue in Cognitive Radio Networks", Communication Research Center, Harbin Institute of Technology, Harbin 150080, China; 20 July 2016, PP: 1-19.

- [23] J.H.Park, J.Chung, "Prioritized channel allocation-based dynamic spectrum access in cognitive radio sensor networks without spectrum handoff", EURASIPJournalonWirelessCommunicationsand Networking (2016) 2016:266, PP: 1-8.
- [24] A.Devi.B.E, K.Jayarajan.M.E, A.Sabari.M.Tech, "Improve the Energy Efficiency in Cognitive Radio Sensor Network using Spectrum Allocation", International Journal of Computer Engineering and Information Technology, VOL. 8, NO. 11, November 2016, PP: 208–212.
- [25] S.Riahi, A.E.Hore, J.E. Kafi, "Optimization of Resource Allocation in Wireless Systems Based on Game Theory", International Journal of Computer Sciences and Engineering (IJCSE), 30 Jan 2016, PP: 1-3.
- [26] B.Awoyemi, B.Maharaja, A.Alfab, "Optimal resource allocation solutions for heterogeneous cognitive radio networks", Digital Communications and Networks, 2016, PP: 1-15.
- [27] X.Gelabert, O.Sallent, J.P.Romero, R. Agustí, "Spectrum sharing in cognitive radio networks with imperfect sensing: A discrete-time Markov model", Computer Networks 54 (2010), PP: 2519–2536.
- [28] M.S Moona, V.Gulhane, "Appropriate channel selection for data transmission in Cognitive Radio Networks", International Conference on Information Security & Privacy (ICISP2015), 11-12 December 2015, Nagpur, INDIA, Procedia Computer Science 78 (2016) PP: 838 – 844.
- [29] A.Asheralieva, Y.Miyanaga, "Joint Bandwidth and Power Allocation for LTE-Based Cognitive Radio Network Based on Buffer Occupancy", Mobile Information Systems Volume 2016, PP: 1-24.
- [30] M.L.Tigang Jiang Liang Tong, "Spectrum handoff scheme for prioritized multimedia services in cognitive radio network with finite buffer", 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, 978-1-4799-3381-5/13 \$31.00 © 2013 IEEE, PP: 410-415.
- [31] V.Kumar, S.Minz, V.Kumar, "Performance analysis of cognitive radio networks under spectrum sharing using queueing approach", Computers And Electrical Engineering, 000(2016), PP: 1-9.
- [32] B.Choi, H.Lim, H.Kang, B.J.Jeong, "Dynamic Priority Scheduling for Heterogeneous Cognitive Radio Networks", 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 978-1-4673-1905-8/12/\$31.00 ©2012 IEEE, PP: 62-64.
- [33] I.A.M. Balapuwaduge, L.Jiao, Frank Y. Li, "Channel Assembling with Priority-Based Queues in Cognitive Radio Networks: Strategies and Performance Evaluation", IEEE Transactions On Wireless Communications, VOL. 13, NO. 2, February 2014, PP: 630-645.
- [34] Y.Qin, Y.Li, W.Wu, F.Yang, X.Wang, J. Xu, "Near-Optimal Scheme for Cognitive Radio Networks With Heterogeneous Mobile Secondary Us", IEEE Transactions On Communications, Vol. 63, NO. 4, April 2015, PP: 1106-1120.
- [35] Pranil Sunil Kale, Prof. Mrs. Padma Lohiya, "Performance Enhancement of Cognitive Radio Spectrum Sharing (CRSS) with MIMO System", IEEE International Conference on Computer, Communication and Control (IC4-2015).
- [36] C.Yi, J.Cai, "Two-Stage Spectrum Sharing With Combinatorial Auction and Stackelberg Game in Recall-Based

Cognitive Radio Networks", IEEE Transactions On Communications, Vol. 62, NO. 11, November 2014, PP: 3740 – 3752.

- [37] Paulo M. R. dos Santos, Mohamed A. Kalil, Oleksandr Artemenko, Anastasia Lavrenko, Andreas Mitschele-Thiel, "Self-Organized Common Control Channel Design for Cognitive Radio Ad Hoc Networks", 2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Mobile and Wireless Networks, PP: 2419 – 2423.
- [38] Guangchi Zhang, Xueyi Li, Miao Cui, Guangping Li, Yizhi Tan, "Transceiver design for cognitive multi-user MIMO multi-relay networks using imperfect CSI", nternational Journal of Electronics and Communications (AEU), 2016.
- [39] Abbas Ali Sharifi, Morteza Sharifi, Mir Javad Musevi Niya, "Secure cooperative spectrum sensing under primary user emulation attack in cognitive radio networks: Attack-aware threshold selection approach", International Journal of Electronics and Communications (AEÜ), 2015.
- [40] Vahid Esmaeelzadeha, Elahe S. Hosseinia, Reza Berangia, Ozgur B. Akan, "Modeling of rate-based congestion control schemes in cognitive radio sensor networks", Ad Hoc Networks, 2015.
- [41] Mahmoud Khasawneh, Saed Alrabaee, Anjali Agarwal, Nishith Goel, Marzia Zaman, "Power trading in cognitive radio networks", Journal of Network and Computer Applications, 2016.
- [42] Chhagan Charan, Rajoo Paney, "Eigenvalue based double threshold spectrum sensing under noise uncertainty for cognitive radio", Optik 127 (2016), PP: 5968-5975.
- [43] Hongjuan Li, Xiuzhen Cheng, Keqiu Li, Xiaoshuang Xing, Tao Jing, "Utility-Based Cooperative Spectrum Sensing Scheduling in Cognitive Radio Networks", 2013 Proceedings IEEE INFOCOM, PP: 165-169.
- [44] Yang Li, Aria Nosratinia, "Hybrid Opportunistic Scheduling in Cognitive Radio Networks", IEEE Transactions On Wireless Communications, VOL. 11, NO. 1, January 2012, PP: 328-337.
- [45] Didem Gozupek, Fatih Alagoz, "A Fair Scheduling Model for Centralized Cognitive Radio Networks", September 2013.
 [46] Jeison Marın Alfonso, Leonardo Betancur Agudelo,
- [46] Jeison Marin Alfonso, Leonardo Betancur Agudelo, "Centralized Spectrum Broker and Spectrum Sensing with Compressive Sensing Techniques for Resource Allocation in Cognitive Radio Networks", 978–1–4799–1148-6/13/\$31.00©2013 IEEE.
- [47] Mehdi Ghamari Adian, Hassan Aghaeinia, "Optimal resource allocation for opportunistic spectrum access in multiple-input multiple-output-orthogonal frequency division multiplexing based cooperative cognitive radio networks", IET Signal Processing, 2013, IET Signal Process., 2013, Vol. 7, Iss. 7, PP: 549–557.
- [48] Yinglei Teng, Yuanyuan Liu, Yong Zhang, "An Energy Efficient Resource Allocation in Cognitive Radio Networks with Pairwise NBS Optimization for Multi-Secondary Users", 2013 IEEE Wireless Communications and Networking Conference (WCNC): MAC, PP: 744-749.
- [49] Renchao Xie, F. Richard Yu, Hong Ji, "Spectrum Sharing and Resource Allocation for Energy-Efficient Heterogeneous Cognitive Radio Networks with Femtocells", IEEE ICC 2012 -Cognitive Radio and Networks Symposium, PP: 1661-1665.
- Cognitive Radio and Networks Symposium, PP: 1661-1665.
 [50] Arun Francis.G, Priyadrachini.S, "Fast Optimal Resource Allocation Possible for Multiuser OFDM-Based Cognitive Radio Networks ",International Journal of Innovative Research in Computer and Communication Engineering Vol. 1, Issue 3, May 2013, PP: 708-711.
- [51] R. Soujanya, V. Harini, "Adaptive Power Allocation in OFDM Based Cognitive Radio Network using Algorithm for the MIMO Relay Path Channels", International Journal of

Innovative Technologies, Vol.04, Issue.01, January-2016, PP: 0022-0027.

- [52] Mujeeb Abdullah, "Priority Queuing Based Spectrum Sensing Methodology in Cognitive Radio Network", School of Engineering Blekinge Institute of Technology.
 [53] Mst. Najnin Sultana, Kyung Sup Kwak, "Non-Preemptive
- [53] Mst. Najnin Sultana, Kyung Sup Kwak, "Non-Preemptive Queueing-Based Performance Analysis Of Dynamic Spectrum Access For Vehicular Communication System Over TV White Space", ICUFN 2011, PP: 43-48.
- [54] Yasir Saleem, Farrukh Salim, Mubashir Husain Rehmani, "Routing and channel selection from cognitive radio network's perspective: A survey", Computers and Electrical Engineering 42 (2015), PP: 117–134,
- [55] Rahman Doost-Mohammady, M. Yousof Naderi, Kaushik Roy Chowdhury, "Spectrum Allocation and QoS Provisioning Framework for Cognitive Radio With Heterogeneous Service Classes", IEEE Transactions On Wireless Communications, Vol. 13, NO. 7, July 2014.

Authors Profile

S.Tamilarasan: He is received the B.E(CSE) degree from Madras University, Chennai, Tamilnadu, India, M.E(CSE) degree from Anna University, Chennai, India, Currently doing doctoral degree in Centre for Information

Technology and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, under the guidance of Dr.P.Kumar, Assistant Professor, Information Technology and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu. Presently I am working as Associated Professor, Department of Computer Science and Engineering, Brindavan College of engineering, Bangalore.

Specialization:

Mobile computing, Advanced Data Structure, Design and analysis of algorithm, Computer networks,

Research Area:

His interesting research field is Cognitive Radio Network, Mobile wireless Ad-Hoc Networks.

Dr.P.Kumar, M.Tech, PhD: He is received M.Sc. (IT), M.Tech (IT), PhD (IT&CSE) from Manonmaniam Sundaranar University Tirunelveli, Tamilnadu, Now He is working as Assistant Professor in the department of Information Technology and Engineering, Manonmaniam Sundaranar University,

Tirunelveli, Tamil Nadu. He is published several international and national journals. He is having more than seven years of research experiences and guiding to the research scholars and M.Phil students.

Specialization:

Mobile computing, Advanced Data Structure, Design and Analysis of Algorithm, Computer Networks, image processing, Distributed Database Management Systems, Compiler Design.

Research Area

His interesting research field is Image Processing, Computer Networks, Wireless communications and networks and Mobile Computing.