
 © 2016, IJCSE All Rights Reserved 46

 *Corresponding Author:
 L.Sridevi

 e-mail: sricharu28@yahoo.in mob: +91 9047558015

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-4, Issue-11 E-ISSN: 2347-2693

Clone Detection Using Abstract Syntax Trees

L Sridevi
*1

 and R.Kannan
2

1*

 Department of Computer Science, Bharathiar University Arts and Science College, Gudalur,

The Nilgiris. India. e-mail: sricharu28@yahoo.in
 2

 Department of Computer Science, Sri Ramakrishna Mission Vidhyalaya Arts&Science College, Coimbatore.

India. e-mail: ramadosskannan@gmail.com

Available online at: www.ijcseonline.org

Received: Oct/23/2016 Revised: Oct/30/2016 Accepted: Nov/20/2016 Published: Nov/30/2016

Abstract— Clones are the piece of Software, which is creating from the copy of the original software. To be more specific, the idea

behind software cloning is to create a new software that replicates the aspect and usefulness of the original software in possible. It is

important to understand that cloning does not have to involve any source code in the original software. Software Cloning typically

occurs in the source code for the original software is not available. In a result, software cloning does not imply source code copying.

Since software cloning goes way beyond simply executing a similar user interface. The goal in cloning is to create a new software

program that mimics everything the original software does and the way in which it does.

Keywords- Code clone, Syntatic method, Clone detect, Clone removal, Abstract Syntax Trees(AST)

I. INTRODUCTION

Code duplication falls in the development of large software

systems. The improvised form of replication consists in

copying, and eventually modifying, a block of existing code

that apply a piece of required functionality. Duplication

segments are called clones and proceed of copying by slight

modifications is also called cloning. Code cloning or

copying code fragments and making minor, non–functional

alterations, is identified for developing software systems

dominant to duplicated code segments or code clones. using

the copy and- paste attributes than writing instructions from

scrape or applying correct replicating mechanisms, based on

invocation or inclusion [4].

Code cloning occurs for other variety of reasons: the short

term cost of forming the proper abstractions may be heavier

the cost of replicating code and takes place when the

developer is alert to the extant of code performs the

functionality similar to, or the same as, the functionality

required [1].

II. CLONE ANALYSIS

 Clone Detection is an advanced analysis engine that

quickly detects duplicate patterns within code and allows you

to find code clones and difficult-to-detect copy-paste bugs.

A. TOKEN BASED VS AST

The analysis based token-suffix trees provides

assorted advantages than other techniques. It measures well

due to linear complexity in both time and space, which

makes it very attractive for large systems. Moreover, no

parsing is necessary and, hence, the code may be even

incomplete and incorrect order of the code. Another

advantage for a tool builder is that a token-based clone

detector can be adjusted to a new language in very short

time. As opposed to text-based techniques, this token-based

analysis is independent of layout (parameters are not quite

true for Baker‟s technique, which is line based; however, if

one uses the original string based technique, line splitting do

not have any effect). Token-based analysis are more

authentic than metrics that concludes abstractions of a piece

of code. since, the level of thickness is typically whole

functions rather than individual statements.

 For instance, the two program snippets left and right in

Listing 1 are considered a clone by a token-based analysis

because their token sequence is identical: return id ; } int id (

) { int id; Although from a lexical point of view, these are in

fact rightful clones, a maintenance programmer would hardly

consider this finding useful [2].

The Listing 1 as follows

r e turn r e s u l t ; r e turn x ; }

}

i n t foo () { i n t b a r () { i n t y ;

i n t a ;

mailto:ramadosskannan@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 47

B. SYNTATIC ANALYSIS:

Syntactic clones can be found to some extent by

token based techniques if the candidate sequences are split in

a post processing step into ranges where opening and their

corresponding closing tokens are completely implemented in

a sequence. For example, by counting matching opening and

closing brackets, we could exclude many spurious clones

such as the one in Listing. programming languages have

many types of establishing tokens after brackets. If, then,

else, and end if, constitutes syntax delimiters in Ada. In

particular, end if is an interesting example as two continuous

tokens form one delimiter and both individual delimiters in

syntactic contexts. If one wants to handle these delimiters

reliably, one is about to start imitating a parser by a

lexer.[3,5,8].

III. CLONE DETECT PROCESS USING AST’S

 Figure 1: Architecture Diagram

As a first step in the clone detection process, the source code

is parsed and an AST is produced . Three main algorithms

are applied to find clones. The basis of the first algorithm is

the Basic algorithm is to detect sub-tree clones. The second

one is sequence detection algorithm which concerned with

the detection of variable-size sequences of sub-tree clones. It

is also used essentially to detect statement and declaration

sequence clones. The third algorithm focus in more complex

near-miss clones by seeking to generalize other clones. The

resulting detected clones can then be pretty printed [6,7,10].

IV. CLONE REMOVAL

 Figure 2: General Structure of the Code Clone

 Removal Process

 Code clone removal is two-staged. In the first stage, a

detailed analysis of detection of code clones is performed

using the abstract syntax tree. This clone detection presents

simple and practical methods for finding exact and near miss

clones over arbitrary program segments in source code by

using abstract syntax trees. In the second stage, we focus on

how the results of stage one can be presented in order to

guide an interactive refactoring/clone removal process [6,9].

V CONCLUSION:

The clone detection method is implemented using

abstract syntax trees (ASTs), which for finding exact and

near miss clones for arbitrary fragments in the source code.

Since detection done in the program structure. clones can be

factored in the source using standard transformational

methods.

The approach is based on variations of methods for

compiler common sub expression elimination using hashing.

The method is straightforward to implement using standard

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 48

parsing technology which detects clones in arbitrary

language. It also constructs and computes macros that

removes the clones without affecting the operation of the

program.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue ”CCFinder: a

multilinguistic token-based code clone detection system

for large scale source code”, IEEE Transactions on

Software Engineering, vol. 28, no. 7, pp. 654 - 670, July

2002

[2] M.Kim, and D. Notkin ”Mining Software Repositories

(MSR): Using a clone genealogy extractor for

understanding and supporting evolution of code clones”,

Proceedings of the 2005 international workshop on

Mining software repositories MSR „05, pp. 1-5, May

2005.

[3] M.Kim, V. Sazawal, D. Notkin, and G. Murphy ”An

empirical study of code clone genealogies”, Proceedings

of the 10th European software engineering conference

held jointly with 13th ACM SIGSOFT international

symposium on Foundations of software engineering

ESEC/FSE-13, pp. 187-196, September 2005

[4] R.Koschke, R. Falke, and P. Frenzel ”Clone Detection

Using Abstract Syntax Suffix Trees”, Proceedings of the

13th Working Conference on Reverse Engineering

(WCRE „06), pp. 253- 262, October 2006

[5] C.K.Roy and J.R. Cordy, NICAD, “Accurate Detection

of Near-Miss Intentional Clones Using Flexible Pretty-

Printing and Code Normalization” in Proceedings of the

16th IEEE International Conference on Program

Comprehension, ICPC 2008.

[6] Mohammed Abdul Bari. “Code Cloning: The Analysis,

Detection and Removal” in proceedings of International

Journal of Computer Applications (0975 – 8887)

[7] R.Koschke, R.Falke and P. Frenzel,” Clone Detection

Using Abstract Syntax Suffix Trees” in Proceedings of

the 13th Working Conference on Reverse Engg. WCRE

2006.

[8] J.Krinke”Advanced slicing of sequential and concurrent

Programs Proceedings of the 20th IEEE International

Conference on Software Maintenance, pp. 464-468,

September 2004.

[9] C.K.Roy and J. Cordy. NICAD: Accurate detection of

near miss intentional clones using flexible pretty-

printing and code normalization. In Proc. 16th IEEE

International Conference on Program

Comprehension, pages 172–181, 2008.

[10] C.K.Roy and J. R. Cordy. A survey on software clone

detection research. Technical report, Queen‟s University

at Kingston, Ontario, Canada, 2007.

.
Authors Profile

 Ms L Sridevi pursed Bachelor of Science from Bharathiar

University of Coimbatore, India in the year 2005 and Master of

Science from Bharathiar University in year 2009. She is currently

working as Assistant Professor in Department of Computer

Sciences of Bharathiar University College of Arts& Science of

Gudalur, The Nilgiris. India since 2009.

Mr R.Kannan working as a Associate professor in the Department

of computer Science of Sri Ramakrishna mission vidhyalaya

College of Arts & Science, Coimbatore. India

