

 © 2020, IJCSE All Rights Reserved 1

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.8, Issue.4, Apr 2020 E-ISSN: 2347-2693

Calculation of Free Bandwidth for Rate-reservation EDF Scheduling in

Flash Storage

Seong-Chae Lim

Department of Computer Science, Dongduk Women’s University, Seoul, South Korea

 DOI: https://doi.org/10.26438/ijcse/v8i4.14 | Available online at: www.ijcseonline.org

Received: 1/Apr/2020, Accepted: 13/Apr/2020, Published: 30/Apr/2020

Abstract—In the long history of database communities, lots of research efforts had been done for reducing seek-times and

rotational delays caused by mechanical components used in HDD (Hard Disk Drive). As an example of those efforts, some

I/O scheduling algorithms were devised for the purpose of efficient services of online video streams being pumped up from

HDD storage. To this end, a rate-reservation EDF is recently adopted to be incorporated into the recent platform built on

flash storage. In this research, a fixed length of time is chosen as a period unit and the disk bandwidth assumption of each

video stream is decided based on that time. The previous rate-reservation EDF algorithm is very suitable for serving a

mixture of real-time requests and common requests without deadline. In this paper, we propose a new way that can

dynamically compute the varying amounts of free bandwidth arising from more-than-reservation reading, while scheduling

video streams according to the rate-reservation EDF algorithm. For this, we devised two data structures that can keep

information about workloads and free bandwidth over a certain length of period units. Using scheduling information

managed in those data structures, our proposed scheme can efficiently utilize slack times that occur unexpectedly from

time to time. Because of the efficient reclamation of slack times, our scheme can improve the actual I/O performance of

flash storage that is prepared for Web-based streaming services.

Keywords—Flash Memory, Video Streaming, I/O Scheduling, Real-time EDF Algorithm

I. INTRODUCTION

In the past time, a lot of research on I/O scheduling was

done for the purpose of reducing I/O overheads in HDD

(hard disk drive) storage [1-11]. That is, diverse algorithms

for optimizing seek times and rotational delays were

proposed for efficient usage of HDD storage. Among

them, the well-known algorithms such as SCAN and C-

SCAN are widely implemented in reality because of their

algorithmic simplicity and relatively low overhead of seek

times [8, 9, 11]. Since these two scheduling algorithms are

not suitable for serving I/O requests with deadlines, they

cannot be used for servicing on-line video streams without

some modifications to them. In this context, some other

algorithms have been proposed to incorporate real-time

features into SCAN-style algorithms [8, 10]. Although

those algorithms work by considering deadlines of I/O

requests in scheduling, they have an inherent limitation due

to their feature of batch-style scheduling [3, 7-9].

Recently, [12] propose a I/O scheduling scheme that

employs an EDF-style algorithm for serving video streams

in flash storage. In this research, scheduling priorities of

I/O requests with deadlines are given by using the earliest-

deadline-first (EDF) policy. To admit video streams within

available storage bandwidth, storage bandwidth is

allocated to streams based on the Rate-reservation EDF

(RR-EDF) algorithm [5]. In nature, this EDF-style

algorithm is suitable for flash storage, rather than HDD

storage, because HDD storage suffers from large variations

of service times for a given set of I/O requests, depending

on their scheduling orders [5]. This is because HDD

storage has mechanical parts having seek times and

rotational delays [3, 9, 10]. Differently from this, flash

memory has no mechanical components, and thus it has

very uniform service times of data requests, regardless of

their physical locations [12, 13]. Therefore, the EDF-style

algorithm can be easily employed in flash storage, since

the service orders of data requests barely affect the total

read time [14-17].

In this pa98per, we propose a way to compute the amounts

of varying slack times, while we are scheduling I/O

requests according to the RR-EDF (rate-reservation EDF)

algorithm. The proposed technique considers a realistic

online streaming service, where a mixture of video data

with timing constraints and non-video data without timing

constraints are retrieved together. Note that this

assumption is feasible for Web-based streaming services.

The idea of adaptation of an EDF-style scheduling

algorithm was previously proposed for its use in flash

storage [12, 13].

In this research, a fixed length of time is selected as a

period unit and the disk bandwidth assumption of each

video stream is decided based on the period unit. Then, a

served stream issues periodically its data requests in

proportion to its bandwidth consumption. The period of

that stream is equivalent with a certain multiple length of

the period unit. Since flash memory can support very

uniform read times against varying scheduling orders of a

given set of I/O requests, the EDF scheduling algorithm is

 International Journal of Computer Sciences and Engineering Vol.8, Issue.4, Apr 2020

 © 2020, IJCSE All Rights Reserved 2

possible in the case of flash storage. This is different from

HDD storage that has varying read times of a given set of

I/O requests according to their scheduling orders. The RR-

EDF algorithm for flash storage uses a rate of disk

bandwidth for serving video’s requests and allocates the

rest of disk bandwidth to non-video requests. The

reservation rate can be easily computed by adding the

amounts of disk bandwidth consumed by all served

streams [5, 6]. By assigning the rest free disk bandwidth to

non-video requests, the RR-EDF algorithm can diminish

the average response time of those requests.

Assume that a RR-EDF scheduler has allocated a given

rate of disk bandwidth in a period unit for video streams. If

there is no non-video request at this time, the remaining

free disk bandwidth will be wasted [12, 14]. Of course, the

remaining bandwidth can be used for serving request from

any video streams. However, the earlier service of the

video requests cannot enhance the system performance

without any technique that can be calculated the effect of

the earlier services in the view of long-term scheduling

scenarios.

In this light, we propose a technique that can assess the

effect of earlier services of video data in a long viewpoint.

From this, the proposed technique can reserve a greater

rate of disk bandwidth that is given to non-video data. For

this, we use two kinds of data structures that bookkeeps

workload bandwidth and additional free bandwidth. The

additional free bandwidth is obtained from the extra

reading of video data, which is called by more-than-

reservation reading. The more-than-reservation reading is

for serving data requests with deadlines. The two

information are based on an extension algorithm of the

RR-EDF algorithm. To utilize those two data structures,

we use a fixed maximum length on scheduling periods of

video streams. From this, we can improve the actual I/O

performance of flash storage established for Web-based

streaming services.

The organization of this paper is as follows. In Section II,

we give some preliminary knowledge about HDD

scheduling algorithms and their major issues. In Section

III, we propose a way used for evaluating slack times

obtainable from earlier services of video’s data requests,

thereby improving performance of flash storage. Lastly, we

conclude this paper in Section IV.

II. BACKGROUND

In this section, we address the basic idea about the well-

known rate-reservation (RR) EDF algorithm. Originally,

the RR-EDF algorithm was devised for scheduling real-

time tasks that consume a fixed amount of CPU times in a

periodic fashion [5, 13, 15]. By adopting the RR-EDF

algorithm, [10] proposed a scheme that can efficiently

handle a mixture of video and non-video requests in flash

storage. In that research, a fixed length of a scheduling

time is chosen as a period unit. Then, the number of data

pages retrievable within the period unit is computed by

considering I/O specifications of a target flash storage. If

that number of retrievable pages is N and the size of the

period unit is T, then the disk bandwidth is given with

 , where is the size of a data page.

When admitting a video stream Si requiring bandwidth

consumption of , the RR-EDF scheduler chooses two

integers and such that)/() . To

minimize wastes caused by bandwidth fragmentations,

and need to be selected so as to get the smallest

bandwidth gap, i.e.,)/() . For the set of

admitted streams (1 i k), the reservation rate U is

computed as ∑
 , and it is managed to be

always below 1. For each period unit, the RR-EDF

scheduler reads number of data pages requested by

admitted video streams according to the EDF policy. From

the schedulability of rate-reservation EDF algorithm, it is

proven that an RR-EDF scheduler guarantees deadlines of

data requests all the time. Since the remaining bandwidth

of is free, the free bandwidth can be assigned

for the service of non-video data requests during each

period unit. Here, N is the number of pages that can be

retrieved in a period unit

To see the RR-EDF algorithm in detail, we present a

schedule that is likely to be made for servicing streams ,
 , and . We assume that , , and equivalently

consumes 3 pages for 1, 2, and 3 period units, respectively.

In other words, consumes bandwidth of
 in size. According to the definition of the RR-EDF

algorithm, the reservation rate of bandwidth is computed as

. If we have flash storage with N = 8,

then the reservation rate is computed as 33/48,

approximately, 0.69.

Figure 1 depicts a scheduling scenario, where data requests

from streams , , and have been served according to

the RR-EDF algorithm. In the figure, the rectangle labeled

with Si represents the page read for Si, and the top half of

that figure shows how the video streams issue their data

request for playback. In the figure, the scheduling periods

of , , and are one, two, and three period units,

respectively. Since is six in the case of Figure 1,

up to six pages are retrieved in a period unit. The deadlines

of requests coincide with the time points of next issues of

requests from video streams.

 International Journal of Computer Sciences and Engineering Vol.8, Issue.4, Apr 2020

 © 2020, IJCSE All Rights Reserved 3

 Figure 1. A Scenario for three video streams using an RR-EDF

algorithm.

III. PROPOSED SCHEME

A. Basic Ideas

In Figure1, we gave an example of possible I/O schedules
that are made by an RR-EDF scheduler. Since the
maximum bandwidth of assumed flash storage is that for
reading eight pages in a period unit, free bandwidth is the
size of reading two pages of non-video data requests in a
period unit. If free bandwidth is used for servicing more
data requests than an expected number of requests, then
earlier services of video’s data requests yield larger free
bandwidth for period units in the future.

For instance, if we read two pages for stream
additionally in period unit 1, then we obtain additional free
bandwidth in period units of 2 and 3. Note that the
deadlines of data requests from S3 are the same as the end
of period unit 3. Through the earlier service of scheduled
data requests, in other words, the RR-EDF scheduler can
get additional free bandwidth used for reading data requests
of non-video requests. From this, our RR-EDF scheduler
can generate very effective real-time schedules for data
requests from video streams.

To implement such an RR-EDF scheduler supporting a
capability of more-than-reservation reading of videos’ data
requests, we need to devise a way for calculating the
amounts of free bandwidth that varies over future’s period
units. For that calculation, we employ the concept of
exchangeability of scheduling. When we have two data
requests and with the same deadline, it is the case that
these two requests are exchangeable in scheduling order.
Therefore, we can freely select a scheduling order between

 → and → .

Based on the before-mentioned scheduling exchangeability,
we can trace amounts of free bandwidth available in period
units. For this, we select an integer parameter, i.e.,
max_period, and compute the bandwidth required by served
video streams until that maximum period. If we pick the
value of parameter max_period as 10, then we compute
bandwidth requirements for 10 period units and enforce
every video stream to have its period length that is not
greater than the length of 10 period units. For instance, the
bandwidth required is computed as follows for the
scheduling parameters, N = 8, U = 0.8, and max_period =
10.

 (= 8, = 8, = 8, = 8, =
8, = 8, = 8, = 8).

In the notation above, we get the bandwidth requirement by

computing at the time of i-th period unit. If a new

video stream is admitted in the i-th period unit and

increases U by 0.1, then our scheduler becomes to get the

data structure follows as:

 (= 9, = 9, = 9, = 9,
= 9, = 9, = 9, = 9).

This data structure is used for saving varying additional free
bandwidth. This extra bandwidth can be used for reading
more data in a faster time.

B. Proposed Algorithm

In this research, we consider the modern SSD whose H/W

specification is shown in Table 1. The storage unit of that

SSD storage is implemented as MLC (Multi-Level Cell)

transistor, and the storage capacity is 500 GB.

Table 1. H/W Specs. of Samsung 970 Evo SSD.

Parameters Data in detail

Storage Capacity 500GB

Cell Type V-NAND 3-bit MLC

Interfaces Used PCIe Gen 3.0 x4, NVMe 1.3

Size of a Page 4KB

Random Read Speed Up to 15K IOPS.

Random Write Speed Up to 50K IOPS

The proposed scheme is used for computing free bandwidth
in a dynamic manner. For this, it is required to compute the
extra free bandwidth that is obtainable from more-than-
reservation reading of video data. We denote the numbers
of data requests that have been processed from more-than-
reservation reading by the term of (,
). Here, the notation of denotes the extra free

bandwidth that was gained by serving a data request with a
deadline of the end point of i-th period unit.

In other words, if of is equal to k, then it is the
case that the RR-EDF scheduler has read k number of pages
with the same deadline as the end point of (n+i)-th period
unit. By dynamically managing the two data structures of
 and (), the RR-EDF scheduler can execute very
flexible scheduling tasks, thereby improving the
performance of flash storage used for servicing video
streams in an online mode.

In Figure 2, we present the algorithm used for dynamically
calculating free bandwidth, which is gained because of
more-than-reservation reads. The algorithm is used for
making a schedule that is executed during j-th period unit.

In the algorithm, we dynamically manage data structures of
 and , which are used for bookkeeping
bandwidth workloads and free bandwidth caused by earlier
reading of video’s data requests. The requests to be served
are put to request set and the set save a mixture of

video data and non-video data. If some requests are served

S1, S2, S3 S1, S3 S1, S2, S3

Time

S1 S1, S2 S1S1, S2 S1

period
unit 1

S1
S1

S1

S2

S2

S2

S1
S1

S1

S3

S3

S3

S1
S1

S1

S2

S2

S2

S1
S1

S1

S3

S3

S3

S1
S1

S1

S2
S2

S2

S1
S1

S1

S1
S1

S1

S2

S2

S2

period
unit 2

 International Journal of Computer Sciences and Engineering Vol.8, Issue.4, Apr 2020

 © 2020, IJCSE All Rights Reserved 4

using more-than-reservation bandwidth, then the values of
 are properly adjusted.

Figure 2. Algorithm for calculating free bandwith gainable from the RR-

EDF scheduling sheme.

IV. CONCLUSIONS

In this paper, we have proposed a way used for calculating

free I/O times, while processing I/O requests according to

the EDF algorithm. In nature, the EDF algorithm is not

suitable for HDD storage because of seek times and

rotational delay. However, the RR-EDF algorithm may be

possible for processing I/O requests in SSD storage. To use

the SSD storage for servicing video streams, the Rate-

Reservation EDF algorithm can be employed. In the

original Rate-Reservation EDF algorithm, it has no

mechanism that can calculate varying slack times by

considering earlier-than-reservation service of data

requests from videos. Since varying free time cannot be

computed in ease, there was no way for utilizing free

bandwidth for storage performance. To solve this, we

proposed a new way for evaluating free bandwidth that can

be obtained by earlier-than-reservation reading. For this,

we use two data structures that can keep records of

workloads and free bandwidth over period units. From this,

the proposed scheme can improve the performance of flash

storage serving on-line video streams.

REFERENCES

[1] Hofri Micha, “Disk Scheduling: FCFS vs SSTF Revisited,"

Communications of the ACM, Vol. 23, No 11, pp. 645-653,

1980.

[2] Houssine Chetto and Maryline Chetto, “Some Results of the
Earliest Deadline Scheduling Algorithm," IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp. 1261-1269, 1989.

[3] M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling
Revisited," in Proc. of the USENIX Winter 1990, pp. 313-324,
1990.

[4] Pengliu Tan, Hai Jin, Minghu Zhang, “A Hybrid Scheduling

Scheme for Hard, Soft and Non-Real-time Tasks,” In

Proceedings of ISORC, pp. 20-26, 2006.

[5] Kang G. Shin and Yi-Chieh Chang, “A Reservation-Based
Algorithm for Scheduling Both Periodic and Aperiodic Real-
Time Tasks," IEEE Transactions on Computers, Vol. 44, No.
12, pp. 1405-1419, 1995.

[6] Xin Li, Zhiping Jia, Li Ma, Ruihua Zhang, and Haiyang Wang,

“Earliest Deadline Scheduling for Continuous Queries over Data

Streams,” In Proceedings of ICESS, pp. 57-64, 2009.

[7] Ray-I Chang, Wei-Kuan Shih, and Ruei-Chuan Chang, “Real-

Time Disk Scheduling for Multimedia Applications with

Deadline-Modification-Scan Scheme,” Real-Time Systems,

Vol.19 , No. 2, pp. 149-168, 2000.

[8] R. K. Abbott and H. Garcia-Molina, “Scheduling I/O Requests
with Deadlines: A Performance Evaluation," In Proceedings of
the Real-Time Systems Symposium, pp. 113-125, 1990.

[9] E. Balafoutis, M. Paterkakis, and P. Triantallou, “Clustered
Scheduling lgorithms for Mixed-Media Disk Workloads in a
Multimedia Server," Cluster Computing Journal, Vol. 6, No. 1,
pp. 75-86, 2003.

[10] Sungchae Lim, “The Dynamic Sweep Scheme using Slack Time
in the Zoned Disk,” In Proceedings of 11st DASFAA, pp. 404-
419, 2006.

[11] Mon-Song Chen, Dilip D. Kandlur, and P. Yu, “Optimization of
Grouped Sweeping Scheduling (GSS) with Heterogeneous
Multimedia Systems," In Proceedings of the ACM Multimedia,
1993.

[12] Seong-Chae Lim, “FlashEDF: An EDF-style Scheduling

Scheme for Serving Real-time I/O Requests in Flash Storage,”

Vol. 10, No. 3, pp. 26-34, 2018.

[13] Tzu-Jung Huang, Chien-Chung Ho, Po-Chun Huang, Yuan-Hao

Chang, Che-Wei Chang, and Tei-Wei Kuo, “Current-aware

Scheduling for Flash Storage Devices,” In Proceedings of IEEE

International Conference on Embedded and Real-Time

Computing Systems and Applications, 2014.

[14] V. Indhumathi, TRP Maximization Technique based Efficient

Scheduling in Grid Environment, Internatilal Journal of

Scientific Research in Computer Sciences and Engineering,

Vol.6, No. 2 , pp. 20-26, 2018.

[15] Vidhi Tiwari and Pratibha Adkar, Implementation of IoT in
Home Automation using Android Application, Internatilal
Journal of Scientific Research in Computer Sciences and
Engineering, Vol.7, No. 2 , pp. 11-16, 2019.

[16] Cheng Ji, Li-Pin Chang, Chao Wu, Liang Shi, and Chun Jason

Xue, “An I/O Scheduling Strategy for Embedded Flash Storage

Devices With Mapping Cache,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 37, No. 4, 2018.

[17] Jaechun No and Sung-soon Park, “Exploiting the Effect of
NAND Flash-Memory SSD on File System Design,” in Proc. of
International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery. 2012.

Authors Profile

Prof. S. C. Lim received the B.S. Degree in

Computer Engineering from Seoul National

University, the M.S. and Ph.D. degrees from

KAIST. He is currently working for the

Department of Dongduk Women’s University

from 2005. His research interests include high-

performance indexing schemes, flash storage

and handling of big data.

Algorithm Calc_Free_Bandwidth

1. Let be the set of admitted video streams, and let U be the

reservation rate of ;
2. Let be the set of non-video requests;

3. ← ; // initialization of a request set

4. if there is a new stream that has been admitted in period unit j then

5. Update (, , , …, max_p); // update of workloads

6. endif.
7. Let the value of of be k;

8. Put k requests with the deadline equal to the end of period unit j

into ;

9. if | | < N then

10. Get up to (| | N) number of non-video requests from ,

and put them into ;

11. if | | < N then

12. Select up to (| | N +) number of video data

requests according to the EDF policy, and put them into S;
13. Put the requests in set S into ;

14. Adjust by considering according to the requests in ;

15. endif

16. Read the requests in according to their deadline urgency;

