
 © 2019, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-9, Sept 2019 E-ISSN: 2347-2693

Community Cloud Model for Infrastructure –As-A-Service in Learning

through Content Sharing

Vincent Mbandu Ochango

1*
, Waweru Mwangi

2
, George Okeyo

3

1,2,3

School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology

Nairobi, Kenya

*Corresponding Author: ochangovincent@gmail.com, Tel.: +254-07-02-86-49-74

 DOI: https://doi.org/10.26438/ijcse/v7i9.17 | Available online at: www.ijcseonline.org

Accepted: 12/Sept/2019, Published: 30/Sept/2019

Abstract—Cloud computing is growing rapidly, with its server farms evolving at a remarkable rate. This paper tries to

elaborate on a community cloud model that tries to use web application to identify maize disease through image matching. The

model tries to match uploaded images with the images stored in the file system and if a match is found, the matching image is

displayed together with its associated disease. The images were matched based on time, location and images collected from

secondary sources to see if the disease can still be identified. All the images matched were successful and the appropriate

diseases associated with the images were identified. The load balancing technology was also incorporated into the model

mainly for the accessibility of the web application and to avoid overloading of one server. The image matching results were

collected and tabulated as shown in chapter four and the results clearly indicated that the community cloud model really helped

users to identify possible disease through the web application hosted on the community cloud model servers.

Keywords—Cloud Computing, Infrastructure-as-a-Service, Web server, Image Matching, Load Balancing

I. INTRODUCTION

Well, known Web applications cannot depend on one server

since when the load exceeds one server gets overloaded

hence one server can process requests which leads to users

experiencing delays [1]. The problem to be solved in this

paper was that one to be able to identify a disease after image

matching through the web application hosted on community

cloud model servers. There is also high load while users try

to access the web application which leads to overloaded

servers that cant process requests on time which in turn leads

to delays hence affecting the clients. Load balancing

technology was incorporated into the model which

distributed requests among upstream servers hence reducing

server overloading. Distributed Web server models that

straightforwardly plan customer demands offer an approach

to meet powerful adaptability and accessibility necessities

hence this avoids overloading the servers hence reducing

delays which leads to high throughput among servers [2].

The aim of this paper is to show and examine how the

community cloud model can be used to identify disease after

image matching by using a web-based application hosted on

servers.

A community cloud model aids counterbalance normal

difficulties crosswise over organizations, such as cost,

innovation multifaceted nature, and spending prerequisites,

security concerns and an absence of division explicit

administrations from specialist suppliers [3].

Rest of the paper is organized as follows, Section I contains

the introduction of community cloud model, Section II

contain the related work of cloud computing infrastructure

and community cloud, Section III contain the methodology

with proposed community cloud model, Section IV describes

experimental results and discussion, Section V concludes

research work with future directions).

II. RELATED WORK

2.1 Cloud Computing Infrastructure

Several cloud stacks are part of the cloud computing

infrastructure [4]. To form a datacenter you require hundreds

to thousands of nodes which is the part of cloud resources or

the lowest stack. In order to build the infrastructure that is

distributed, with Hosting Platform of cloud supports the main

responsibilities of management infrastructure like metering

usage, accounting and billing the virtualization technology

deployed in core middleware.

The core middleware and the underlying system

infrastructure is where the Infrastructure as a Service is

formed from. The development platform is a cloud service

offered at the user-level middleware which is referred to as

PaaS. The SaaS sends cloud applications to CSU and it is

usually at the top stack which entails user applications [5].

https://www.sciencedirect.com/topics/computer-science/platform-support
https://www.sciencedirect.com/topics/computer-science/virtualization-technology
https://www.sciencedirect.com/topics/computer-science/infrastructure-system
https://www.sciencedirect.com/topics/computer-science/infrastructure-system
https://www.sciencedirect.com/topics/computer-science/development-platform

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 2

The tasks and obligation of resources of the cloud are

separated amongst Cloud Service Provider and Cloud

Service User which makes the difference between cloud and

traditional in-house infrastructure [6].

In the Figure above, the architecture of cloud heap

from Buyya et al. (2015) was adopted with the possibility of

the controller from Jansen and Grance (2013) to expound on

the scope of control amongst the CSP and CSU, for all heap

of the cloud structural design. The arrows represent the range

of scope and control over the stack of resources. When the

stack gets lower the Cloud Service User should have extra

access to cloud resources. Cloud Service Provider will take

more control with Software as a Service however minimum

control with Infrastructure as a Service then contrariwise

Cloud Service User should take less control over the

resources with Software as a Service then extra control with

Infrastructure as a Service. The CSU or CSP capability to

create and handle mechanisms of security is determined by

control over resources. The CSP is responsible for hypervisor

vulnerability management while the CSU is responsible for

secure coding, and encryption under PaaS level. During

planning cloud incident handling strategies, the security

control shared responsibility handling and controllable needs

to be taken into consideration [7].

Among data centers of the same CSP, a workload can

migrate from one server to another server. At this time it is

not feasible moving a load to a CSP which is different. For

all targeted clouds, application binaries must be created and

data replicated in order to use multiple clouds. This is an

unfeasible in practice thus, a costly proposition. Information

about data formats, software procedures, tools executing

these procedures and software stack internal specifications,

Cloud Service Providers are usually difficult to share. Such

data gives CSP an advantage over its competitors [8]. Cloud

interoperability poses a fair number of challenges due to the

current limitations of computing and communication

technologies. The growth of an interacting cloud, a global

company permitting Cloud Service Providers to distribute

workload is quite difficult while why a difficult system such

as the interconnection of computers is very effective? The

architecture of the Internet which is a global computer

network is built on two acceptable concepts:

 The computer at the margin of the global computer

network, need to have one or more Internet Protocol

address so that each computer in a network to be

identified easily.;

 Every computer must send packets by similar IP, thus

packets transmitted must arrive its endpoint.

The interconnection of computers is to send packets

irrespective of their origin, composition, vocal sound,

pictures, packets received by a measuring device, or credible

kind of data. The packets are packed in small blocks, large,

medium, or desirable size of blocks and also should be

packaged again at whatever time the necessity arises in order

to create the circumstances at ease. The packets are delivered

from the origin to the endpoint within a short amount of time

in case the software requires so [9].

2.2 Community Cloud
A community cloud is incorporating the variety of services

of different clouds to handle the exact concerns of a

community through distributed systems [10]. The community

cloud infrastructure is used by the community that makes use

of the cloud services offered by the cloud. The cloud of a

certain community should exist within their premises or

outside their premises and it should be controlled by the

community itself or an external organization [11].

Figure 1. Usage Scenario of Community Clouds

https://www.sciencedirect.com/topics/computer-science/security-mechanism
https://www.sciencedirect.com/topics/computer-science/incident-handling
https://www.sciencedirect.com/topics/computer-science/software-stack
https://www.sciencedirect.com/topics/computer-science/usage-scenario

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 3

Figure 1 shows the reference architecture together with the

general view of the usage scenario of community clouds. All

of the users focus on the same issues for their interaction

with the cloud, the community cloud users fall into a well-

identified community, sharing the same concerns or needs;

they can be government bodies, industries, or even simple

users [12]. The community cloud serves a multitude of users

with different needs which is a different scenario than public

clouds [13]. With community cloud, the services are

generally delivered within the institution that owns the cloud

which makes it also different from private clouds.

III. METHODOLOGY

The main motivation for creating the community cloud

model was to enable users to identify the possible disease

associated with the image they upload through the web

application that is hosted on the community cloud servers.

The community cloud servers have been incorporated with

the load balancing technology that reduces the overloading of

servers hence enhancing the accessibility of the web

application hosted on the community cloud servers.

Figure 2.Community Cloud Model

Figure 2 above is a theoretical model for community cloud,

to really make use of the model, the users must be existing.

When the user has a gadget that is able to access the internet,

he or she requests for web application through his gadget.

The request first hits the webserver distributing requests and

the server itself has been configured with the Round Robin

(R.R) method of distributing requests. The web server will

then forward the first load to the first listed upstream server

which will process the requests and takes back to the

webserver. If the second requests hit the webserver

distributing requests which will, in turn, the forward second

request to the second listed web server. When the requests

will continue hitting the web server distributing requests, the

webserver shall continue forwarding them in a circular

fashion. The web server will then take back the processed

requests to the users' gadget. The users will, in turn, be able

to view the web application on their gadget. The users will be

provided with an interface through the web application where

they will be able to upload the image they have taken. And

the image uploaded is matched with the one in the web

application file system. If the match is found the disease

associated with the image matched with is displayed to the

user.

3.1 Round Robin Algorithm

The round-robin was used as the way of distributing load for

the model. Community cloud model had three servers in

place. The first server was configured with the round-robin

load-balancing algorithm and the other two servers acted as

the upstream servers. The round-robin load-balancing

algorithm rotated connection requests among web servers in

the order that requests were received. For a simplified

example, the research work had a cluster of two servers:

emaize2 and emaize3.

 The first request went to emaize2 server.

 The second request went to emaize3 server.

The load balancer continued passing requests to servers in a

round-robin manner.

During configuration of the load balancer with the algorithm,

the following was considered;

1. The servers to be included in the load balancing scheme

were defined

2. The research work used the servers' private IPs for better

performance and security.

3. The servers private IPs were found at the Up Cloud

control panel Network section.

4. The research work ensured that the load balancer

accepted all traffic to port 80 and passed the traffic to the

upstream servers.

5. The research work also ensured that the upstream name

and the proxy_pass matched and the upstream name

used was emaize.

3.1.1 The load balancer tool used to collect web server

metrics

Nginx Amplify Agent tool was installed in the load balancer

(Load balancer is a web server) to provide system and web

server metric collection. This enabled the research work to

know the number of connection accepted against the time the

connection was accepted and from the results, it is clear to

know if the load balancer accepted all the requests and

forwarded them to the backend servers hence if all requests

were forwarded there were no requests that were dropped.

https://www.sciencedirect.com/topics/computer-science/usage-scenario
https://www.sciencedirect.com/topics/computer-science/sharing-community

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 4

Since there was no request dropped it showed that there was

a connection established between the client and the server

hence maize disease identification using the emaize web

application was successful. The tool also enabled research

work to collect the HTTP 5xx errors which refer to

an error code 500-511, which covers server errors. These

errors appear when the web application’s server is failing to

fulfil requests, and therefore the web application cannot

display the requested data. From the results discussed in

chapter four, there were zero HTTP 5xx errors this indicated

that users were able to access emaize web application thus

they were able to identify the possible disease according to

the image they uploaded on the emaize web application.

3.2 Image matching with the emaize web application.

The web application developed and hosted on the digital

ocean which is an Infrastructure-as-a-Service was called

emaize. The emaize web application tries to match the image

uploaded by the users of the web application with the one in

the file system and if the match is found then the disease

associated with the image matched is identified. The emaize

web application was hosted on two servers and the third

server was configured as a load balancer to avoid the

overloading of the servers. The file system used contained 16

images that were matched with the one the users uploaded on

the emaize web application. The proposed model targeted

any user who practices maize farming and the model was

mainly for users to be able to identify the disease through

image matching according to the image they upload on

emaize web application hosted on community cloud servers.

A total of 22 images were uploaded using the emaize web

application to see if the disease can be identified after image

matching and the results were discussed in chapter four.

3.2.1 How image matching was done with emaize web

application.

Pseudocode

Begin

 For all images

Convert them to bitmap

If bitmap images are valid then

Resize them to 16×16 pixel

Else if images are equal then

Convert them to grayscale

Else if images are grayscale then

Loop through each pixel to compare

Else

Images not grayscale

End if

End for

Calculate the percentage difference

Similarity=100%-Percentage Difference

Return the highest similarity

Return the name of the image with the highest similarity

End

3.3 Images Used During Experiment

The images used for the experiment were 16 images which

were stored in a file system, 4 images were stored in folders

named Corn Smut, Maize Chlorotic Mottle Virus, Maize

dwarf mosaic, and Maize Lethal Necrosis respectively which

leads to a total of 16 images since each folder had 4 images.

The folders were named based on the disease the images are

associated to.

The 16 images stored in the file system were obtained from

both secondary and primary sources and were matched with

images collected based on location, time and secondary

sources.

First of all the research work started by matching images

based on the location they were taken from, time and finally

images collected from secondary sources.

3.3.1 Images collected based on Location

Image is taken from Ebunangwe, Kenya

Image is taken from Ebusiloli, Kenya

Image is taken from Emuhaya, Kenya

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 5

3.3.2 Images collected based on time

Morning Hours

Afternoon Hours

The above images together with the images collected from

secondary sources were used in image matching experiment

and the results were discussed in chapter four.

IV. RESULTS AND DISCUSSION

The main objective of this chapter was to explain the results

of the model after being tested to see if it really does what it

was supposed to do.

4.1 Image matching using the emaize application to

identify maize disease.

The research work used emaize web application, where the

emaize web application provides an interface where the

farmers uploads the images and then the uploaded images are

compared with the one in the file system then the appropriate

percentage matching is returned with the appropriate disease

the image could be associated with as shown in the diagram

below.

Figure 3.Maize Dwarf Mosaic disease identification from

an image taken from Luanda, Kenya

The other images are taken from different places in Kenya to

be matched and the percentage matching to be returned with

the appropriate disease the image could be associated with is

as shown in figure 4.

Figure 4.Image taken from Esalwa, Kenya

Figure 5. Disease identified from figure 4 after image

matching

Figure 6.Image is taken from Ebusiloli, Kenya

Figure 7. Disease identified from figure 6 after image

matching

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 6

Results of image matching based on time

The first image in the first category of image collected during

morning hours was matched and the results were displayed

as shown in figure 8.

Figure 8.Corn smut disease

Figure 8 indicates that the first image taken under morning

hours was associated with corn smut disease with a matching

percentage of 99.22%

The image matching results gotten from emaize web

application was tabulated as shown in the table below.

Table 1. Location image matching and possible disease

identified

Image Source Matching

Percentage (%)

Possible Disease

Luanda, Kenya 100 Maize Dwarf

Mosaic Virus

Esalwa, Kenya 96.48 Corn Smut

Ebusiloli, Kenya 100 Maize Chlorotic

Mottle Virus

Mundika, Kenya 94.14 Maize Lethal

Necrosis

Ebunangwe,

Kenya

100 Corn Smut

Mwiyala,Kenya 97.66 Maize Chlorotic

Mottle Virus

Table 2.Image matching based on images taken during

morning hours and possible disease identified

Matching Percentage (%) Possible Disease

99.22 Corn Smut

95.7 Maize Dwarf Mosaic

Table 3.Image Matching based on images taken during

afternoon hours and possible disease identified

Matching Percentage (%) Possible Disease

97.66 Corn Smut

94.92 Maize Dwarf Mosaic

Table 4.Image matching based on Images taken during

evening hours and Possible Disease Identified

Matching Percentage (%) Possible Disease

96.88 Corn Smut

93.75 Maize Dwarf Mosaic

Table 5. Image matching based on images taken from

secondary sources and possible disease identified

Image Source Matching

Percentage

(%)

Possible

Disease

www.pri.org 97.66 Corn smut

en.wikipedia.org 99.61 Corn smut

www.flickr.com 99.22 Maize

Chlorotic

Mottle

Virus

ohioline.osu.edu 98.05 Maize

Dwarf

Mosaic

b4fa.org 96.88 Maize

Lethal

Necrosis

core.ac.uk 98.83 Maize

Chlorotic

Mottle

Virus

www.gardeningknowhow.com 98.44 Maize

Dwarf

Mosaic

www.talkafrica.co.ke 99.22 Maize

Lethal

Necrosis

www.hobbyfarms.com 97.27 Corn Smut

4.2 Nginx Amplify Agent used to collect server

performance metrics.

The Amplify Agent is a Python application that provided a

system and web server metric collection. Figure 9 shows

HTTP 5xx errors which refer to an error code 500-511,

which covers server errors. These errors appear when the

web application’s server is failing to fulfil requests, and

therefore the web application cannot display the requested

data. From figure 9 below it indicates that there were zero

HTTP 5xx errors hence the users were able to identify the

possible disease according to the image they uploaded on the

emaize web application.

The request time per second from the figure below is 0.515s

which means that the load balancer wasn’t going through the

event loop while processing the request. It was able to read

the request from the client, read data from disk and send all

data to backend servers without overflowing.

http://www.pri.org/
http://www.flickr.com/

 International Journal of Computer Sciences and Engineering Vol. 7(9), Sept 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 7

Figure 9 also indicates the health score of the emaize

application. The health score of the emaize application is

a calculated representation of how well the application is

working based on its performance and resource

utilization. According to the nginx amplify agent tool when

the health score of the application is between 90 – 100 it

indicates that it performs well. The health score for the

emaize application according to figure 9 was 97.8% which is

an indication that the end-user experience while interacting

with the emaize web application was good.

Figure 9. Overview representation of performance

metrics

V. CONCLUSION AND FUTURE SCOPE

The fundamental target of the study was to create a

community cloud model for farmers that identifies a possible

disease from the image the farmer has uploaded to the

emaize cloud-based application. The images uploaded by the

farmers during testing of the model were images taken from

different hours of the day and from a different location and

from different secondary sources. The main aim of this was

to see if the disease can still be identified despite images

taken from a different time, location and different secondary

sources. And from the experimental results and discussion, it

indicates that the disease was identified from all the 22

images uploaded on the emaize web application. The

community cloud model has used load balancing solution

which has applied redundantly servers which help in better

distribution of the communication traffic so that the emaize

web application availability is conclusively settled. The

round-robin load-balancing algorithm utilized on the

community cloud model has been utilized to improve the

accessibility and to lessen the overloading of the web servers.

The emaize cloud-based application has made a great success

and it provides quick and convenient information on the

possible disease the image uploaded could be associated

with. In future enhancements, the load balancing algorithm

used can be fine-tuned further to consider different server

processing capabilities.

ACKNOWLEDGMENT

I would like to thank my supervisors Prof.Waweru Mwangi

and Dr.George Okeyo for their guidance and support in

assisting me with the entire research. They have been with

me through high and low moments I experienced during

research. I am very grateful to them and may God bless you.

Special acknowledgement to my uncle Benson Abwao, who

supported me when I started this degree. Finally, to my

mother Sarah Agiso Ochango for her support and

encouragement throughout my studies.

REFERENCES

[1] Alhakami, H., Aldabbas, H., & Alwada, T. (2012). COMPARISON

BETWEEN CLOUD AND GRID COMPUTING : REVIEW PAPER,

2(4), 1–21.
[2] Al Nuaimi K, Mohamed N, Al Nuaimi M, Al-Jaroodi J 2012 A survey

of load balancing in cloud computing: challenges and algorithms In

Proceedings - IEEE 2nd Symposium on Network Cloud Computing
and Applications, NCCA 2012 p. 137–42

[3] Ahmed, M., & Hossain, M. A. (2014). CLOUD COMPUTING AND

SECURITY ISSUES IN THE Cloud. International Journal of Network
Security & Its Applications, 6(1), 25–36.

http://doi.org/10.5121/ijnsa.2014.6103

[4] Arokia, R., Rajan, P., & Shanmugapriyaa, S. (2013). Evolution of
Cloud Storage as a Cloud Computing Infrastructure Service. IOSR

Journal of Computer Engineering (IOSRJCE), 1(1), 38–45. Retrieved

from http://arxiv.org/abs/1308.1303
[5] Badidi, E. (2013). A Framework for Software-as-a-Service Selection

and Provisioning. International Journal of Computer Networks and

Communications (IJCNC), 5(3), 12.
http://doi.org/10.5121/ijcnc.2013.5314

[6] Basmadjian, R., Meer, H., Lent, R., & Giuliani, G. (2012). Cloud

computing and its interest in saving energy: the use case of a private
cloud. Journal of Cloud Computing: Advances, Systems, and

Applications, 1(1), 5. http://doi.org/10.1186/2192-113X-1-5
[7] Computing, M., Jaiswal, P. R., & Rohankar, A. W. (2014).

Infrastructure as a Service : Security Issues in Cloud Computing, 3(3),

707–711.
[8] Dave S, Maheta P 2014 Utilizing round robin concept for load

balancing algorithm at virtual machine level in cloud environment Int J

Comput Appl [Internet] 94(4) 23–9
[9] Desai T, Prajapati J 2013 A survey of various load balancing

techniques and challenges in cloud computing Int J Sci Technol Res

[Internet] 2(11) 158–61
[10] Distributed load balancing algorithms for cloud computing 24th IEEE

Int Conf Adv Inf Netw Appl Work WAINA [Internet] 551–6

[11] Gopinath P P G, Vasudevan S K 2015 An In-depth analysis and study
of load balancing techniques in the cloud computing environment.

Procedia Comput Sci [Internet] Elsevier Masson SAS 50 427–32

[12] Gulati, A., & Chopra, R. K. (2013). Dynamic round robin for load
balancing in a cloud computing. IJCSMC, 2(6), 274-278.

[13] Haryani N, Jagli D, Sangita O, Dhanamma J, Jagli1 M D, Solanki R, et

al. 2014 Dynamic Method for Load Balancing in Cloud Computing Int
Conf Circuits, Syst Commun Inf Technol Appl [Internet] 5(4) 336–40

Authors Profile

Vincent Mbandu is a passionate tech developer with experience

leading in Information Technology, technology

consultancy and Cloud Computing. He is undertaking Masters of

Science in Information Technology from Jomo Kenyatta University

of Agriculture and Technology. He holds a Bachelors of Science in

Information Technology from JKUAT (2014).He is currently a

Graduate Teaching Assistant at Gretsa University.

Waweru Mwangi is an associate professor of computing at Jomo

Kenyatta University of Agriculture and Technology (JKUAT) in

Kenya.

George Okeyo is a Lecturer in Computer Science at De Montfort

University (DMU), Leicester, UK.

