
 © 2015, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-03, Issue-09 E-ISSN: 2347-2693

A Streamlined Frequent Item set excavating using FP growth
from Map Reduce

Ahilandeeswari. G
1

and R.Manicka Chezian
2*

1,2*

 Department of Computer Science, NGM College, Pollachi, India

www.ijcseonline.org

Received: Aug/12/2015 Revised:Aug/28/2015 Accepted:Sep/20/2015 Published: Sep/30/2015

Abstract— As a significant part of discovering association rules, frequent item sets excavating plays a key role in removal

associations, correlations, bass and other imperative data mining tasks. Since a little customary frequent item sets mining algorithms

are incapable to knob gargantuan small file datasets effectively, such as high recall cost, high I/O operating price, and squat

computing recitals, a better Parallel FP-Growth (EPFP) algorithm and converse its applications in this paper. In particular, a small file

processing strategy for huge small file datasets to reimburse defects of squat read/write speed and low processing efficiency in

Hadoop. Moreover, utilize of Map Reduce to execute the parallelization of FP-Growth algorithm, thereby improving the general

performance of frequent item set mining. The investigation results demonstrate that the EPFP algorithm is practicable and suitable

with a excellent speedup and a higher mining efficiency, and can convene the rapidly growing needs of frequent item sets mining for

enormous petite file data sets.

Keywords: Frequent item set mining, Hadoop Map Reduce, Parallel FP-Growth, Small files problem

I. INTRODUCTION

Association rules are one of the most active research

methods in data mining. Association rule mining is to find

strong association rules. That can be alienated into two sub-

problems, discovering a frequent item-sets and generating

association rules. The main features of data mining

technology are that it discovers implicit and useful knowledge

from huge, multifaceted and high-latitude data sets. This puts

special challenges on association rules techniques. In 1994,

Agrawal proposed the famous Apriori algorithm, but there are

two drawbacks in it. First, because it repeatedly scans the

contract database, it needs a lot of I/O load; Second, it

will cause vast candidate set. FP-Growth is a good solution to

the above two problems. The biggest advantage of the FP-

Growth algorithm is that it only scans database twice. It

directly compresses the database into a frequent pattern

tree instead of using a candidate set and finally generates

association rules through the FP-tree. As one of the important

investigate directions of data mining, frequent item sets mining

plays an essential role in mining associations, correlations,

causality and other vital data mining tasks [1] which is a

brawny impetus to the applications of association rules in

markets selection, decision analysis and business management

[5]., massive data are growing rapidly. Apache Hadoop is an

open source distributed software platform for storing and

processing data. Written in Java, it runs on a cluster of

industry-standard servers configured with direct-attached

storage. Association rules show attributes worth conditions

that occur frequently jointly in a given dataset.

Distributed File System (HDFS) and Map Reduce parallel

programming replica provide a novel idea for handling big

data. In the frequent item sets mining for large-scale data, a

Map Reduce looms of parallel FP-Growth (PFP) algorithm is

proposed in [8], and the performance of PFP algorithm is

improved by adding load balancing features in [11], but these

methods ignore frequent Item sets mining for massive small

file data sets in Hadoop. Diminutive files usually refer to those

file sizes, which are less than 64 MB. According to a study in

2007 at the National Energy Research Scientific Computing

Center, 43% of the over 13 million files on a shared parallel

file system are under 64 KB and 99% are under 64 MB

(Petascale Data Storage Institute (2007)), and more scientific

applications consist of a large number of small files are

interpreted in [4]. Nevertheless, in the face of immense small

file data sets, the constructed FP-tree in Parallel FP-Growth

(PFP) algorithm cannot fit into the memory, which frequently

causes problems such as memory overflow and mammoth

communication overhead. Meanwhile, the computing

efficiency of the Hadoop platform largely depends on the

recital of HDFS and Map Reduce [10], and Hadoop was, at

first, designed specifically to handle streaming large files, so

when dealing with colossal small files, there are significant

limitations. Huge small files will reduce the performance of

Hadoop, which is mainly shown in the following two aspects:

[7].

 (1) The entrée competence of HDFS is decreased.

(2) The added overhead of Map Reduce is increased.

Hadoop skeleton is trendy for HDFS as well as Map Reduce.

HDFS is the Hadoop file system and comprises two main

components: namespaces and blocks storage service. The

namespace service manages operations on files and Corresponding Author: Corresponding Author: Ahilandeeswari.G,

ahilaplatinum@gmail.com, Department of Computer science, NGM College,

Pollachi India

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(1-6) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 2

directories, such as creating and modifying files and

directories.

II. RELATED CONCEPTS AND DESCRIPTION

A. Item Sets Space approach

Agrawal et al. R ecognized the item-sets space theory for

transactional database excavating. The hub attitude of this

theory is that the subsets of recurrent item-sets are frequent

item-sets; the superset of non-frequent item-sets are non-

frequent [6]. This attitude, anti-monotone property, has

been applied as a typical data mining theory. In 1994, they

proposed Apriori and the Apriori algorithm has been still

widely discussed as the standard association rule mining

algorithm. But with further research, its shortcomings bare.

For every k cycle, the algorithm

Has to scrutinize the database once to confirm it, whether or

not to join Lk for every element of the candidate set. That is

exponential expansion. When the number of frequent item

sets is large, it will fabricate a huge candidate set. This is a

confront for time and memory space. In order to recover the

effectiveness of Apriori algorithm; it appears a series of

improved algorithms, such as the data partitioning technique,

hash-based method, transaction compression method and so

on. Although they still follow the above hypothesis, due to

the preface of the relevant technology, these algorithms

improve the adaptability and efficiency of the Apriori

algorithm to some amount.[1]

B. FP-Growth Algorithm

Apriori is a common algorithm for mining frequent

item-sets, which has an awfully important nature: all

non-empty subsets of frequent item-sets must are also

frequent. But it has to scrutinize record multiply prior to it

produces frequent patterns and at the same time produces a

large number of candidate frequent sets. That makes the

Apriori algorithm have larger time and space complexity.

Besides, the recital of the Apriori algorithm in mining long

frequent patterns is often low. In 2000, Han proposed the FP-

Growth algorithm.The pr imary idea i s tha t f i rs t sweep

the Transactional database to locate frequent 1-item sets, and

then construct the FP-tree. At last it discovers conditional

pattern base to pit regular pattern based on the FP-tree [3].Use

transaction database information to construct FP-tree

1) Scrutinize database for the first occasion, get frequent 1-

item sets L.

2) Create the origin of the tree with the "root" tag. Scan

DB for the second time and make a branch for each

transaction.

Mining frequent patterns of the FP-tree

1) For apiece item, generate its provisional pattern base

and then its conditional FP-tree;

2) For apiece new generated provisional FP-tree, repeat

This step until the FP-tree is null or it only has unique branch;

The algorithm mining frequent patterns in the FP-tree is as

follows:

Input: the tectonic fine FP-tree; transaction database

DB; minimum support threshold Minsup.

Output: the complete set of frequent patterns. Method: Call FP-

growth (FP-tree, null).The hub for mining FP-Tree

algorithm is the FP-growth path. It achieves frequent

patterns in the form of recursive calls.

III. SYSTEM MODEL

Hadoop is able to take packed advantage of the control of

clusters to figure and store tasks in high speed. Hadoop is a

software outline which can process large amounts of facts

distributed and is reliable, efficient, and scalable. Hadoop

assumes to computing elements and storage tin fail and so it

maintains many working copies of data to ensure the

redistribution process for the failed lump. So it is reliable.

Hadoop works in similar and speeds up processing through the

mode of parallel computing. So it is able. Hadoop is scalable

and capable of handling the PB rank data [11]. Therefore,

Hadoop is suitable for the algorithm. The structure of Hadoop

components is exposed in Fig.1. In the architecture, Hadoop

general provides a generic function block to support the

Hadoop subprojects. Map Reduce components supply Map

and Reduce processing. HDFS compiles distributed

sleeve storage mechanism. ZooKeeper provides vital services

like to distribute lock for building distributed applications [5].

The most core designs of Hadoop are HDFS and Map Reduce

computation model [4], HDFS is an implementation of Hadoop

Distributed File scheme and provides the underlying support

for distributed computing storage. The design of Map Reduce

was initially raised by one of Google's papers. The Easiest

explanation for Map Reduce is that task decomposition and a

summary of the results

Figure 1: Hadoop module arrangement

HDFS is a simple but really powerful distributed file system. It

is able to store data reliably at main scale. HDFS deployments

live with thousands of nodes storing hundreds of petabytes of

client data. The distributed file system component, the major

example of which is the Hadoop Distributed File System,

Map Reduce

HBase

HDFS

Zookeeper

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(1-6) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 3

though other file systems, such as IBM GPFS-FPO, are

supported.[5]

HDFS is a highly fault-tolerant distributed system. Distributed

File System has the following basic characteristics:

1) A solitary namespace for the entire cluster

2) Data consistency, appropriate for write-once many read

model. The client cann ot see the survival of the file before it

is not successfully created.

 3) The sleeve will be divided into multiple folders.

Each file block is allocated to amass the data node. It will

have to replica the file block to guarantee the security of the

data according to the configuration. HDFS is suitable for

deployment in a cheap machine. HDFS provides high

throughput facts access and ideal for applications on large-

scale data sets. HDFS is a master-slave structure system.

HDFS clusters are made from a Name Node and many Data

Nodes. Each is a node frequent PC HDFS has three important

roles, Name Node, Data Node, and Secondary Name Node, job

tracker, task tracker and Client.[7][3]

 Name Node can be seen as a manager for the

distributed file system. It is primarily responsible for

managing the file system’s namespace, cluster configuration

and storage block replication. Info concerning each file block

in Data Node. Data Node is the basic unit of the file storage. It

stores Block in the local file scheme and saves only

the Metadata of Block. At the same time it sends reports of all

existing Blocks periodically to Name Node. The Client is the

application procedure that needs to obtain the distributed file

system files.[8][9]

 Secondary Name node periodically merges the namespace

image with the audit log and maintains a copy of this

namespace image. It usually runs on a separate machine.

However the Secondary Name node lags in state with the

primary Name node, thus in case of failure of a primary Name

node some data loss occurs for sure. A Job tracker coordinates

all the jobs that are run on the system by scheduling each task

to run on task trackers. It is the responsibility of Job tracker to

reschedule a failed task on a different task tracker.[1][2]

 Map Reduce is a equivalent programming framework that

integrates with HDFS. It allows users to express data analysis

algorithms in terms of a little number of functions and

operators, chiefly, a map function and a reduce function. The

Map Reduce component, which is a framework for performing

calculations on the data in the distributed file system. Pre-

Hadoop 2.2 Map Reduce is referred to as Map Reduce V1 and

has its own built-in resource manager and scheduler[5].

MapReduce is an important advance because it allows

ordinary developers, not just those skilled in high-

performance computing, to use parallel programming

constructs without worrying about the complex details of

intra-cluster communication, task monitoring, and failure

handling. MapReduce simplifies all that.[4]Map Reduce is a

programming model for large-scale data set (more than 1TB).

System’s namespace, cluster configuration and storage block

replication. Moreover Map reduce saves the programmers from

writing code for node failure and handling dataflow as these

are handled implicitly by Map Reduce. Whereas Grid

Computing provides greater control to handle data flow and

node failures.

Name Node will store Metadata of the file system in memory.

These include the file information, the file block information

corresponding to each file and the information of each file

block in Data Node. Data Node is the basic unit of the file

storage. It stores Block in the local file system and

saves only the Metadata of Block. At the same time it sends

reports of all existing Blocks periodically to Name Node. The

Client is the application procedure that needs to obtain the

distributed file system files. Map Reduce is a programming

model for large-scale data set (more than 1TB). Its main idea

is borrowed from the functional programming language as

well as vector Programming language. It greatly facilitates

that programmers make their own procedures run in the

distributed system without knowing the parallel programming.

Fig. 2 shows the estimated data flow diagrams of Map Reduce.

It is a highly efficient.[10]

 Figure. 2 Map Reduce estimated dataflow diagram

Input Data

Split Split Split

Map Map Map

Partition

Suffle

Sort

Reduce

Output 1

Reduce

Output 2

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(1-6) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 4

IV. FP GROWTH ALGORITHM USING MAP REDUCE

 Map Reduce distributes the operations on big data sets to a

master node and some sub-node in sort to complete it together.

Then during integration of the intermediate results of each

node it gets the final result.[10]

TABLE 1

TRANSACTION DATABASE

The task of each Mapper is responsible for adding up the

number of individual items in the Mapper data wedge.

Combiner midway function merges the intermediate results

outputted by each Mapper in sort to diminish the transmission

of data between map tasks and reduce tasks.[11] Then after the

Map Reduce framework handles it, finally the harvest data is

sent to reduce the function to get the final result. Reckon the

number of each item in the database and store items whose

support is greater than or equal to the minimum support in F-

List (the support of thesis instance is 3), F-List = {I3: 7, I1: 6,

I2: 6, I5: 4, I4:3}, F-List memories the utmost frequent item

sets. A Combiner intermediate function is mentioned here. The

available bandwidth of clusters limits the number of Map

Reduce jobs, so the most important thing is to try to Avoid

the transmission of data between map tasks and reduce tasks.

Hadoop allows users to denote a merge function Combiner for

output of plan tasks. Its production is the contribution of

reduce. Merge utility is an optimization program. No stuff how

many times Combiner utility is called when the schedule is

running, the final output is reliable with each other

The pseudo-code for Mapper

Modus operandi:Mapper(key, value=Ji)

foreach item mi in Ji do

Call Output(<mi,’1’>);

End

Figure 3:Pseudo-code for Mapper

The pseudo-code for Combiner and Reducer

modus operandi: Combiner(key,value=Output(<mi,’1’>) of

each mapper)

C ←0;

foreach item ‘1’ in mi do

C← C+1;

Call Output(<mi,C>);

End

modus operandi: Reducer(key=mi , value=S(mi)) D← 0;

foreach item ‘C’ in Ji do

D ← D+C;

end

Call Output(<mi,D>);

Figure 4 : Pseudo-code for Combiner and Reducer

Mapper1

J1,J3,J5

J1,J2,J3

J3,J5

Figure 5: Disseminated statistic vision of objects

The transaction database is sorted in accordance with the

frequency size of items. The results are shown in table II

TID Transaction TID Transaction

1

J1 J3 J5
6 J1 J2 J5

2

J1 J2 J3
7 J1 J2 J3

3

J3 J5
8 J1 J3

4

J2 J3 J4
9

J1 J2 J3 J4 J5

5 J2 J4

Mapper3

J1,J2,J3

J1,J3

J1,J2,J3,J4,J5

Mapper2

J2,J3,J4

J2,J4

J1,J2,J4

Combiner1 Combiner2 Combiner3

J1,2

J2,1

J3,3

J5,2

J1,1

J2,3

J3,1

J4,2

J5,1

J1,1

J2,3

J3,1

J4,2

J5,1

 J1,6

J2,6

 J3,7

 J4,3

J5,4

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(1-6) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 5

TABLE 2

SORT TRANSACTION DATABASE

TID Transaction TID Transaction

1 J3 J1 J5

6 J1 J2 J5

2
J3 J1 J2

7 J3 J1 J2

3

J3 J5

8 J3 J1

4 J3 J2 J4

9 J3 J1 J2 J5 J4

5 J2 J4

The FP-growth algorithm based on a linked list mining in each

computer node through Map Reduce computation model

V. ENHANCED FP GROWTH ALGORITHM

DESCRIPTION

EPFP algorithms for mining frequent itemsets in massive small

file datasets in detail.

(1) Write a small file processing program—Sequence File. The

Sequence File is used to combine all massive small files, which

are composed of a huge amount of transaction datasets stored

in HDFS, into a hefty transaction data file (transaction

database).

(2) Equally split the transaction database into several sub

operation databases and then consign them to different nodes in

Hadoop huddle. This step is automatically operated by HDFS,

when necessary, we canister use the poise command enabling

its file system to attain load balancing. [7]

(3) Divide J_list into M groups, denoted as cluster_list

(abbreviated as C_list), and disperse group_id for each group

sequentially and each C_list contains a set of items.[7]

(4) calculate support count of each item in the transaction

database by Map Reduce, and then attain the set of J_list from

support count in descending order.[7] [3]

(5) Complete the parallel computing of FP-Growth

Algorithm by Map Reduce. The Map function compares the

item of each transaction in the sub-transaction database with

the item in C_list. If they are same, next distribute the

corresponding transaction into the machine associated with

C_list. Otherwise, compares to the next item in C_list.

Eventually, the independent sub-transaction databases

corresponded to C list will be produced. The Reduce function

recursively computes the sovereign sub-transaction databases

generated in step and then constructs the FP-tree. This stride is

similar to the process of customary FP-tree generation, but the

difference is a size K maxheap HP which stores frequent

pattern of each item.[7]

 (6) Amassed the local recurrent item sets generated from

each node in the cluster by Map Reduce, and finally get the

global frequent item sets

VI. CONCLUSION

In this paper, it is described that the smaller file processing

approach, the EPFP algorithm can diminish memory cost

greatly and recover the efficiency of data access, thus avoids

recall overflow and reduces I/O overhead. Meanwhile, the

EPFP algorithm is migrated to the Map Reduce environment,

which can absolute frequent item sets mining efficiently and

thus augment the overall recital of FP-Growth algorithm. The

experimental results explain that EPFP algorithm can make a

breakthrough where PFP algorithm has its defects in handling

huge small file datasets, and has a superior speedup and a

higher mining efficiency.

 REFERENCES
[1] Khurana K and Sharma S, ―A comparative analysis

of association rule mining algorithms, International
Journal of Scientific and Research Publications,
Volume 3, Issue 5, pp 38-45, May 2013.

[2] Peng Zhao, “Research Mining Frequent Items Algorithm

in Massive High-dimensional Data Sets”, Computer

Applications and Software, 2012.

[3] Ahilandeeswari.G, DR.R Manicka Chezian, “A

Comparative analysis of Association rule excavating in

Big Data Mining Algorithms ”, International Journal Of

Computer Science and Engineering, Volume 3, Issue 6,

pp 82-88,June 2015

[4] Ms. Dhamdhere Jyoti L., Prof. Deshpande Kiran B.
"An Effective Algorithm for Frequent Itemset Mining
on Hadoop.", International Journal of Science,
Engineering and Technology Research (IJSETR),
Volume 3, Issue 8, August 2014.

[5] Guojun Mao, Lijuan Duan, Shi Wang, Yun Shi,
“data mining principles and algorithms (the second
edition)”, Tsinghua University Press, Beijing, 2007.

[6] Tom White, “Hadoop: The Definitive Guide, Second

Editon”, Tsinghua University Press, 2011.

 [7] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, Edward

Chang,“Pfp: Parallel Fp-Growth for Query

Recommendation”, RecSys '08 Proceedings of the

2008 ACM conference on Recommender systems,

Pages 107-114 ACM New York, NY, USA ©2008.

 [8] Ferenc Kovacs and Janos Illes “Frequent Itemset

Mining on Hadoop.”,IEEE 9th International

conference on Computational Cybernetics, Volume 2

Issue 4, June 2013.

[9] A. Swami, T. Imielienski, R. Agrawal," Mining

Association Rules between Sets of Items in Large

databases.", ACM Press, pp 207–216, July 1993

[10] Yang Liu, Maozhen Li, Alham, N.K., Hammoud,

S.,Ponraj, M. “Load balancing in MapReduce

environments for data intensive applications”,

Fuzzy Systems and Knowledge Discovery (FSKD),

2011 Eighth International Conference on,Page(s):

2675 - 2678 ,2011.

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(1-6) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 6

[11] Ferenc Kovacs and Janos Illes “Frequent Itemset

Mining on Hadoop.”,IEEE 9th International

conference on Computational Cybernetics, Volume 2

Issue 4, June 2013.

AUTHORS BIOGRAPHY:

MS Ahilandeeswari.G received an MCA

degree from Anna University,Chennai. In

2006 and 2009 respectively,currently a

research scholar at Department of

Computer Science,NGM College,

Pollachi. Her research interest lies in the

area of Data Mining and Big Data Mining

DR. R.Manicka chezian received his
M.Sc., degree in Applied Science from
P.S.G College of Technology,
Coimbatore, India in 1987. He completed
his M.S. degree in Software Systems from
Birla Institute of Technology and Science,
Pilani, Rajasthan, India and Ph D degree
in Computer Science from School of Computer Science and
Engineering, Bharathiar University,Coimbatore, India. He
served as a Faculty of Maths and Computer Applications at
P.S.G College of Technology, Coimbatore from 1987 to
1989. Presently, he has been working as an Associate
Professor in N G M College (Autonomous), Pollachi under
Bharathiar University, Coimbatore, India since 1989. He
has published more than 120 papers in various International
Journals / Conferences. His research focuses on Network
Databases, Data Mining, Distributed Computing, Mobile
Computing, Real Time Systems and Bio-Informatics.

