Open Access   Article Go Back

High Gain Transformer less Boost Converter for Solar PV Application

Jeneesh Scaria1 , Preethi Sebastian2 , Susan V Nainan3

Section:Research Paper, Product Type: Journal Paper
Volume-5 , Issue-3 , Page no. 141-145, Mar-2017

Online published on Mar 31, 2017

Copyright © Jeneesh Scaria, Preethi Sebastian, Susan V Nainan . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Jeneesh Scaria, Preethi Sebastian, Susan V Nainan, “High Gain Transformer less Boost Converter for Solar PV Application,” International Journal of Computer Sciences and Engineering, Vol.5, Issue.3, pp.141-145, 2017.

MLA Style Citation: Jeneesh Scaria, Preethi Sebastian, Susan V Nainan "High Gain Transformer less Boost Converter for Solar PV Application." International Journal of Computer Sciences and Engineering 5.3 (2017): 141-145.

APA Style Citation: Jeneesh Scaria, Preethi Sebastian, Susan V Nainan, (2017). High Gain Transformer less Boost Converter for Solar PV Application. International Journal of Computer Sciences and Engineering, 5(3), 141-145.

BibTex Style Citation:
@article{Scaria_2017,
author = {Jeneesh Scaria, Preethi Sebastian, Susan V Nainan},
title = {High Gain Transformer less Boost Converter for Solar PV Application},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {3 2017},
volume = {5},
Issue = {3},
month = {3},
year = {2017},
issn = {2347-2693},
pages = {141-145},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5488},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5488
TI - High Gain Transformer less Boost Converter for Solar PV Application
T2 - International Journal of Computer Sciences and Engineering
AU - Jeneesh Scaria, Preethi Sebastian, Susan V Nainan
PY - 2017
DA - 2017/03/31
PB - IJCSE, Indore, INDIA
SP - 141-145
IS - 3
VL - 5
SN - 2347-2693
ER -

VIEWS PDF XML
189 251 downloads 154 downloads
  
  
           

Abstract

This article proposes a new high-gain transformerless dc/dc boost converter. Although they possess the ability to boost voltage at higher voltage levels, converter switching devices are under low voltage stress. The voltage stress on active switching devices is lower than the output voltage. Therefore, low-rated components are used to implement the converter. The proposed converter can be considered as a promising candidate for PV microconverter applications, where high voltage-gain is required. The principle of operation and the steady-state analysis of the converter in the continuous conduction mode are presented. A hardware prototype for the converter is implemented in the laboratory to prove the concept of operation.

Key-Words / Index Term

High gain dc/dc converter; low voltage stress; photovoltaic (PV)

References

[1]. Abdel-Rahim, O.; Funato, H.; Haruna, J. A comprehensive study of three high gain dc-dc topologies based on cockcroft-walton voltage-multiplier for reduced power PV applications. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 642–651. [CrossRef]
[2]. Zaid, M.; Lin, C.-H.; Khan, S.; Ahmad, J.; Tariq, M.; Mahmood, A.; Sarwar, A.; Alamri, B.; Alahmadi, A. A Family of transformerless quadratic boost high gain dc-dc converters. Energies 2021, 14, 4372. [CrossRef]
[3]. Barbosa, E.A.O.; Carvalho, M.R.S.D.; Rodrigues Limongi, L.; Cavalcanti, M.C.; Barbosa, E.J.; Azevedo, G.M.D.S. High-gain high-efficiency dc–dc converter with single-core parallel operation switched inductors and rectifier voltage multiplier cell. Energies 2021, 14, 4634. [CrossRef]
[4]. Pereira, A.V.C.; Cavalcanti, M.C.; Azevedo, G.M.; Bradaschia, F.; Neto, R.C.; Carvalho, M.R.S.D. A novel single-switch high step-up dc–dc converter with three-winding coupled inductor. Energies 2021, 14, 6288. [CrossRef]
[5]. Li, W.; He, X. Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 2011, 58, 1239–1250. [CrossRef]
[6]. Souza, L.C.; Morais, D.C.; Silva, L.D.S.D.C.E.; Seixas, F.J.M.D.; Arenas, L.D.O. DC-DC 3SSC-a-based boost converter: Analysis, design, and experimental validation. Energies 2021, 14, 6771. [CrossRef]
[7]. Gholizadeh, H.; Gorji, S.A.; Afjei, E.; Sera, D. Design and implementation of a new cuk-based step-up DC–DC converter. Energies 2021, 14, 6975. [CrossRef]
[8]. Chub, A.; Vinnikov, D.; Blaabjerg, F.; Peng, F.Z. A review of galvanically isolated impedance-source DC-DC converters. IEEE Trans. Power Electron. 2016, 31, 2808–2828. [CrossRef]
[9]. Abdel-Rahim, O.; Wang, H. A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems. CPSS Trans. Power Electron. Appl. 2020, 5, 191–200. [CrossRef]
[10]. Arango, E.; Ramos-Paja, C.A.; Calvente, J.; Giral, R.; Serna-Garces, S.I. Asymmetrical interleaved dc/dc switching converters for photovoltaic and fuel cell applications—Part 2: Control-oriented models. Energies 2013, 6, 5570–5596. [CrossRef]
[11]. Abdel-Rahim, O.; Chub, A.; Blinov, A.; Vinnikov, D. New high-gain non-inverting buck-boost converter. In Proceedings of the IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13 October 2021; pp. 1–6.
[12]. Ojeda-Rodríguez, Á.; González-Vizuete, P.; Bernal-Méndez, J.; Martín-Prats, M.A. A survey on bidirectional dc/dc power converter topologies for the future hybrid and all electric aircrafts. Energies 2020, 13, 4883. [CrossRef]
[13]. De Souza, A.F.; Tofoli, F.L.; Ribeiro, E.R. Switched capacitor dc-dc converters: A survey on the main topologies, design characteristics, and applications. Energies 2021, 14, 2231. [CrossRef]
[14]. Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [CrossRef]
[15]. Andrade, A.M.S.S.; Martins, M.L.D.S. Quadratic-boost with stacked zeta converter for high voltage gain applications. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1787–1796. [CrossRef]
[16]. Ai, J.; Lin, M. Ultralarge gain step-up coupled-inductor dc-dc converter with an asymmetric voltage multiplier network for a sustainable energy system. IEEE Trans. Power Electron. 2017, 32, 6896–6903. [CrossRef]
[17]. Vighetti, S.; Ferrieux, J.P.; Lembeye, Y. Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems. IEEE Trans. Power Electron. 2012, 27, 2018–2027. [CrossRef]
[18]. Zhang, Y.; Gao, Y.; Zhou, L.; Sumner, M. A switched-capacitor bidirectional dc-dc converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 2018, 33, 9459–9469. [CrossRef]
[19]. Ballo, A.; Grasso, A.D.; Palumbo, G.; Tanzawa, T. Linear distribution of capacitance in Dickson charge pumps to reduce rise time. Int. J. Circ. Theor. Appl. 2020, 48, 555–566. [CrossRef]
[20]. Ballo, A.; Grasso, A.D.; Palumbo, G. A simple and effective design strategy to increase power conversion efficiency of linear charge pumps. Int. J. Circ. Theor. Appl. 2020, 48, 157–161. [CrossRef]
[21]. Ahmed, M.E.; Orabi, M.; AbdelRahim, O.M. Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications. IET Power Electron. 2013, 6, 1812–1821. [CrossRef]
[22]. Axelrod, B.; Berkovich, Y.; Ioinovici, A. Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC pwm converters. IEEE Trans. Circuits Syst. 2008, 55, 687–696. [CrossRef]
[23]. Young, C.-M.; Chen, M.-H.; Chang, T.-A.; Ko, C.-C.; Jen, K.-K. Cascade Cockcroft–Walton Voltage Multiplier Applied to Transformerless High Step-Up DC–DC Converter. IEEE Trans. Ind. Electron. 2013, 60, 523–537. [CrossRef]
[24]. Andrade, A.M.S.S.; Hey, H.L.; Schuch, L.; da Silva Martins, M.L. Comparative Evaluation of Single Switch High-Voltage Step-Up Topologies Based on Boost and Zeta PWM Cells. IEEE Trans. Ind. Electron. 2018, 65, 2322–2334. [CrossRef]
[25]. Li, W.; Xiang, X.; Li, C.; Li, W.; He, X. Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system. IEEE Trans. Power Electron. 2013, 28, 300–313. [CrossRef]
[26]. Liu, H.; Li, F. A novel high step-up converter with a quasi-active switched-inductor structure for renewable energy systems. IEEE Trans. Power Electron. 2016, 31, 5030–5039. [CrossRef]
[27]. De Paula, W.J.; Júnior, D.D.O.; Pereira, D.D.; Tofoli, F.L. Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electron. 2015, 8, 2044–2057.
[28]. Stauth, J.T.; Seeman, M.D.; Kesarwani, K. Resonant switched-capacitor converters for sub-module distributed photovoltaic power management. IEEE Trans. Power Electron. 2013, 28, 1189–1198. [CrossRef]
[29]. Waradzyn, Z.; Stala, R.; Mondzik, A.; Penczek, A.; Skala, A.; Pirog, S. Efficiency Analysis of MOSFET-Based Air-Choke Resonant DC–DC Step-Up Switched-Capacitor Voltage Multipliers. IEEE Trans. Ind. Electron. 2017, 64, 8728–8738. [CrossRef]
[30]. Cervera, A.; Evzelman, M.; Peretz, M.M.; Ben-Yaakov, S. A high-efficiency resonant switched capacitor converter with continuous conversion ratio. IEEE Trans. Power Electron. 2015, 30, 1373–1382. [CrossRef]
[31]. Stala, R.; Waradzyn, Z.; Mondzik, A.; Penczek, A.; Ska?a, A. DC–DC high step-up converter with low count of switches based on resonant switched-capacitor topology. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 2–5 September 2019; pp. P.1–P.10.
[32]. Shoyama, M.; Naka, T.; Ninomiya, T. Resonant switched capacitor converter with high efficiency. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference 2004, Aachen, Germany, 20–25 June 2004; Volume 5, pp. 3780–3786. [CrossRef]
[33]. Kesarwani, K.; Sangwan, R.; Stauth, J.T. Resonant-switched capacitor converters for chip-scale power delivery: Design and implementation. IEEE Trans. Power Electron. 2015, 30, 6966–6977. [CrossRef]
[34]. Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Wiley: Hoboken, NJ, USA, 2013.
[35]. Nguyen, M.; Duong, T.; Lim, Y. Switched-Capacitor-Based Dual-Switch High-Boost DC–DC Converter. IEEE Trans. Power Electron. 2018, 33, 4181–4189. [CrossRef]
[36]. Ardi, H.; Ajami, A.; Kardan, F.; Avilagh, S.N. Analysis and implementation of a nonisolated bidirectional DC-DC converter with high voltage gain. IEEE Trans. Ind. Electron. 2016, 63, 4878–4888.
[37]. Chen, M.; Hu, J.; Li, K.; Ioinovici, A. A new switched-capacitor based hybrid converter with large step-up DC gain and low voltage on its semiconductors. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016; pp. 1190–1193. [CrossRef]
[38]. Ahmad, J.; Zaid, M.; Sarwar, A.; Lin, C.-H.; Asim, M.; Yadav, R.K.; Tariq, M.; Satpathi, K.; Alamri, B. A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications. Energies 2021, 14, 2629. [CrossRef]