
157
National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Special Issue-1 E-ISSN: 2347-2693

Performance Evaluation of BioPerl, Biojava, BioPython, BioRuby and

BioSmalltalk for Executing Bioinformatics Tasks

Dipanjan Moitra*

Dept. of Management,
University of North Bengal, Darjeeling-734013.

tataijal@gmail.com

R. K. Samanta
Dept. of Computer Science & Application

University of North Bengal, Darjeeling–734013.
rksamantark@gmail.com

Abstract—In the recent years, Bioinformatics and computational biology are two of some important and

active research disciplines. Finding insights into biology, information technology tools in the form of

programming languages suitable for biology along with data mining tools and techniques are deployed. The

open source programming languages used in bioinformatics are informally called Bio* projects. This work

explores the performances of BioPerl, Biojava, BioPython, BioRuby, BioSmalltalk under Bio* projects for

executing bioinformatics tasks.

Keywords-Bioinformatics, Bio* projects , BioPerl, Biojava, BioPython, BioRuby, BioSmalltalk.

I. INTRODUCTION

Bioinformatics, a rapidly evolving discipline, is the application of computational tools and techniques to the
management and analysis of biological data [1]. Common tasks in bioinformatics are parsing the results of an
analysis program, sequence similarity searching, functional motif searching, sequence retrieval, multiple sequence
alignment, restriction mapping, secondary and tertiary structure prediction, DNA analysis, literature searching,
protein analysis, sequence assembly, etc. [2], [3].

Wide range of bioinformatics tasks can be accomplished by using different programming languages. These
languages may be broadly classified as script languages (Perl, Python, Ruby, etc.) and non-script languages (C, C++,
Java, etc.). The non-script group may further be classified as compiled (C, C++, etc.) and semi-compiled (Java, C#,
etc.) languages [5]. Several studies have been carried out in order to compare these languages and such studies have
revealed that the script group often turns out to be more productive than conventional languages [4].

Script languages and a few semi-compiled languages available for performing various bioinformatics tasks mostly
belong to the group of Open Source Projects. It is less expensive than its commercial peer and anybody can
contribute towards the development of the project [6]. The open source programming languages used in
bioinformatics are informally called Bio* projects, typically pronounced with a Bio prefix, e.g., BioPerl, BioJava,
BioPython, etc. [2], [7], [8].

Section 2 describes some leading Bio* projects. Literature review is done in section 3. Section 4 describes the
objective of the study. Research methodology is described in section 5. Section 6 presents the codes used in the
study. Results and discussion are presented in section 7. Limitations of the study and future scope are discussed in
section 8.

II. DESCRIPTION OF LEADING BIO* PROJECTS

Bioperl, perhaps the oldest of the Bio* projects, is a group of more than 500 Perl modules having numerous
bioinformatics utilities and have been written and maintained by an international group of volunteers [1], [11]. The

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

bioperl-live repository contains the core functionality and additional packages are for creating graphical interfaces
(bioperl-gui), setting up persistent ORM storage in RDMBS (bioperl-db), running and parsing the results from
hundreds of bioinformatics applications (bioperl-run), and software to automate bioinformatics analyses (bioperl-
pipeline) [12], [13]. It also has data models and operations for ontologies, phylogenetic trees, genetic maps and
markers and population genetics [2].

The BioJava is an open source bioinformatics project. The BioJava API's have capabilities for manipulating
biological sequences, parsing common file formats, accessing to BioSQL and other databases, performing statistical
analysis, and other tasks [13].

The Biopython Project is an international association of developers of freely available Python tools for
computational molecular biology and life science research [14].

The BioRuby project is an open source class library for bioinformatics written in the object oriented scripting
language Ruby [15]. The BioRuby library provides various methods for manipulating biological sequences,
accessing biological databases, parsing database entries, executing biological analysis applications and parsing their
results [13].

BioSmalltalk is a library for doing pure object-oriented bioinformatics with the Smalltalk programming system
[10].

III. LITERATURE REVIEW

While coding a bioinformatics algorithm, programmers or biologists often select any of the so called Bio*
projects depending upon the familiarity of the language. Several efforts have been conducted towards the
benchmarking of programming tools or languages. They are mostly speculative in nature. Although a few empirical
studies have been conducted so far, in order to measure the efficiencies of bioinformatics languages, they have their
respective limitations. Some of them have studied the efficiency of both the script and non-script groups [4], [5].
Another few have studied the popularity of a handful of Bio* projects [8]. Some of them have a lack of homogeneity
[9] and some have considered a narrow range of languages [10] and thus may create confusion in the mind of the
user that which language he/she should select. These works are undoubtedly useful from their respective standpoints,
there is a need to empirically study the leading Bio* projects in order to find out their merits, popularity as well as
their limitations. To the best of our knowledge, there is no study comparing these five languages we consider in this
paper.

IV. OBJECTIVE OF THE STUDY

The primary objective of the paper is to study the merits and limitations of the leading Bio* projects: BioPerl,
Biojava, BioPython, BioRuby and BioSmalltalk. In order to accomplish the aforementioned objective, the following
quantitative metrics have been considered: Lines of Code (LOC), Execution Time and Memory Usage for carrying
out basic bioinformatics tasks. Another objective of the paper is to find out the popularity and maintainability of
these open source projects and the following qualitative parameters have been considered in this regard: Community
Support, Maintainability and User Interest.

V. RESEARCH METHODOLOGY

A basic bioinformatics task was selected in order to measure the merits of the selected Bio* languages. The task
was to read a local GENBANK file having a single sequence and to convert it into an equivalent FASTA file. The
task is disk I/O bound and secondly, it is independent of any external factor and it is a simple text parsing job. These
characteristics make the task ideal for benchmarking. The task was then implemented using each of the concerned
programming languages under same platform and configuration which were as follows:

• Operating System – Windows 8 Single Language
• Processor – Intel ® Core ™ i5-3230M CPU @ 2.6 GHz
• Installed Memory – 4 GB

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

• System Type – 64-bit OS, x64-based processor

In this paper, the following languages/tools and versions have been used:

i) BioPerl 1.6 with Strawberry-perl-5.18.2.2-64bit
ii) BioJava 1.3 with bytecode-0.92
iii) BioPython 1.64 with Python version 3.4.1
iv) BioRuby 1.4.3 with Ruby 2.0.0-x64
v) Pharo (BioSmalltalk 0.5)/BioPharo

In order to avoid adverse effects of other running processes, each program was executed several times and the
average values regarding execution times, memory usage along with the respective LOC were recorded.

Google Trends measures how often people search for the given term relative to the total search-volume across
various regions of the world [16]. The horizontal axis of the resulting graph represents time, and the vertical is how
often a term is searched for relative to the total number of searches, globally. This indicates the demand for
information about the particular language [18]. The scaled search volume for each language from 2004 to 2014 along
with a prediction for 2015 had been measured using Google Trends [17]. This shows the interest of users for these
languages and thus depicts the popularity of the concerned language.

Open Source projects can hardly sustain without a consistent Community Cooperation [20]. This qualitative
metric can be indirectly measured by using the following quantitative metrics:

• Number of Committers - a committer is a developer who is able to modify the source code of a particular
piece of open-source software [21].

• Number of Commits - commits record changes to the software system [22].

Another significant qualitative metric is the Maintainability [19] which may be indirectly measured by using
the following quantitative metrics:

• Total Lines of Code – typically the size of the project or total physical lines.
• Comment Density - comment lines divided by total lines of code.

VI. GLIMPSES OF CODES

Wherever Times is specified, Times Roman or Times New Roman may be used. If neither is available on your
word processor, please use the font closest in appearance to Times. Avoid using bit-mapped fonts if possible. True-
Type 1 or Open Type fonts are preferred. Please embed symbol fonts, as well, for math, etc.

A. BioPerl

use Benchmark::Timer;
use Bio::Perl;
forces genbank format
my $infilename = 'AF165912.gbk';
my $outfilename = 'outPerl.fa';
my $t = Benchmark::Timer->new();
$t->start('my_tag');
#reads an array of sequences
@seq_object_array = read_all_sequences($infilename,'genbank');
write_sequence(">$outfilename", 'fasta', @seq_object_array);
$t->stop;
print $t->report;

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

$waitVar = <STDIN>;

B. BioJava

import java.io.*;
import org.biojava.bio.*;
import org.biojava.bio.seq.*;
import org.biojava.bio.seq.io.*;
public class RWBiojava {
public static void main(String[] args) {
long start = System.currentTimeMillis();
try {
BufferedReader br = new BufferedReader(new FileReader("AF165912.gbk"));
String format = "GENBANK";
String alpha = "DNA";
SequenceIterator iter =
(SequenceIterator)SeqIOTools.fileToBiojava(format, alpha, br);
SeqIOTools.writeFasta(new FileOutputStream("outBiojava.fa"), iter);
long stop = System.currentTimeMillis();
System.out.println("total =\t" + (stop - start) + "(msec)");
while(true){}
}
catch (FileNotFoundException ex) {
//can't find file specified by args[0]
ex.printStackTrace();
}catch (BioException ex) {
//invalid file format name
ex.printStackTrace();
}catch (IOException ex){
//error writing to fasta
ex.printStackTrace();
}
}
}

C. BioPython

from Bio import GenBank
from Bio import SeqIO
from sys import *
import time
start = time.clock()
gb_file = "AF165912.gbk"
gb_handle = open(gb_file, 'r')
SeqIO.convert("AF165912.gbk", "genbank", "outBiopython.fa", "fasta")
end = time.clock()
print ("%f" % (end-start))

D. BioRuby

#!usr/bin/env ruby
require 'bio'

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

require 'benchmark'
result = Benchmark.measure do
ff=Bio::FlatFile.new(Bio::GenBank,ARGF)
f = File.new("myfile.fa", "w")
while gb=ff.next_entry
 f.puts(gb.seq.to_fasta("gb:#{gb.entry_id}
#gb.definition}",70))
end
f.close
end
puts result
sleep(10)

E. BioSmalltalk

| file x y m t l s p q e d c f b stream working |
x:=Time millisecondClockValue .
file := BioFile on: (FileStream readOnlyFileNamed: BioObject testFilesDirectoryName asFileReference /
'AF165912.gbk').

e:=file contents.
m:=e asString.
s:=m size.
t:= m findString: 'ACCESSION' startingAt: 1 caseSensitive: true.
c:=m findString: (String cr) startingAt: t caseSensitive: true.
d:=m copyFrom: t+9 to: c.
f:=d trimBoth.
l:=m findString: 'ORIGIN' startingAt: 1 caseSensitive: true.
p := m copyFrom: l+6 to: s.
q:= p asUppercase select: [:a | a isLetter or: a==(Character cr)].
q:= q trimBoth.
b:= '>',f,String crlf,q.
working := FileSystem disk workingDirectory.
stream := (working / 'test.fa') writeStream.
stream nextPutAll: b.
stream close.
y:=Time millisecondClockValue.
Transcript open.
Transcript show:(y-x);cr.

VII. RESULTS AND DISCUSSION

Table 1 shows the memory usage, execution time and Lines of Code (LOC) for the bioinformatics tasks as
described in section 5.

Table 1: Comparison of Memory Usage, Execution Times & LOC

Language
Memory

Usage
Execution Time LOC

BioPerl 24.5 MB 295.76 ms 13

BioJava 19.0 MB 1047.00 ms 30

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

BioPython 11.0 MB 279.68 ms 10

BioRuby 7.7 MB 640.47 ms 14

BioSmalltalk 54.0 MB 12.00 ms 20

From the table 1, it was evident that BioRuby has had the lowest memory usage and BioPython was very close to

it. BioPerl and BioJava had performed moderately. BioSmalltalk had the highest memory usage. BioSmalltalk has
had the lowest execution time and no other language was a close match for it. Performances of BioPyhton and
BioPerl were average. BioRuby was lagging far behind them. BioJava had the maximum execution time. BioPython
had consumed the lowest LOC. BioPerl and BioRuby were close to BioPython. BioSmalltalk and BioJava had much
larger LOC and among them BioJava was the largest.

From the above results, it may be said that the performance of BioPython was very consistent and it may be
considered to be one of the most preferable languages for performing basic bioinformatics tasks.

It was noted that, in spite of having a larger memory usage and LOC, Biosmalltalk had the lowest execution time
which was considerably less than other languages. The reason behind having a hefty size and memory consumption
was that, there was no direct API support to convert a local GENBANK file to its equivalent FASTA format.
However, there is an API support for online conversion and for a disk I/O based conversion only if the source file is
in XML format. This fact had compelled the experiments to continue with primitive Smalltalk operations. If there
were API support, there would have been a much lesser memory consumption and size.

Fig.1. shows the trends of interest of users for these languages and thus depicts the popularity of the concerned
language which was obtained using Google Trends.

Fig 1

From fig. 1, it is found that Pharo (BioSmalltalk) had the most dominant presence in the sphere of Bio*

community. Users’ interest to BioPerl was also consistent, but that is quite natural for an old language like it. It was
also clear that the search volume for BioJava, BioRuby was also gradually decreasing. After considering the
prediction part of fig. 1, it could be said that only BioSmalltalk and BioPython might be there as far as users’
interest or popularity is concerned.

Table 2: Repository Metrics Data (OpenHub)

Qualitative

Parameters

Qualitative

Parameters

Bio

Perl
Bio Java

Bio

Python
Bio Ruby

Bio

Smalltalk

Community Average no. of 17 20 27 3 15

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

Cooperation Contributors per
month

Average Commit

frequency per month
301 564 606 22 687

Maintainability Comment Density 32.8 28.8 14.6 21.1 12.7

Total LOC as on

2014
819477 538232 368708 1279542 588822

Percentage of blank

lines to the total LOC
20.3 13.8 9.1 12.8 13.4

Percentage of code

lines to the total LOC
46.9 57.4 76.3 66.3 73.8

From the above discussion, it may be concluded that, if there is a proper API support, BioSmalltalk may be

considered for performing basic bioinformatics tasks. Otherwise, BioPython may be a good alternative, at least for
the beginners.

VIII. LIMITATIONS & FUTURE SCOPE

In the study, only one basic bioinformatics task has been considered. Experiments may be conducted with other
bioinformatics tasks like performing disk I/O with GENBANK file having multiple sequences, finding a sequence in
a GENBANK file with a locus name [9], computing the reverse complement of a DNA sequence, translating a DNA
sequence to Protein, etc. The complicated bioinformatics tasks will also be considered in our future work.

REFERENCES

[1] James Tisdall, Beginning Perl for Bioinformatics, First Edition, O’Reilly, October 2001, ISBN: 0-596-00080-4

[2] Jason E.Stajich, Hilmar Lapp, “Open Source tools and toolkits for bioinformatics: significance, and where are
we?”, Briefings in Bioinformatics, Oxford University Press, Vol. 7 No. 3, Pp. 287-296, 2006

[3] Dat Tran, Christopher Dubay, Paul Gorman, William Hersh, “Applying Task Analysis to Describe & Facilitate
Bioinformatics Tasks”, MEDINFO, 2004, M. Fieschi et al. (Eds), Amsterdam: IOS Press, IMIA

[4] Lutz Prechelt, “An empirical Comparison of C, C++, Java, Perl, Python, Rexx and Tcl for a search/string-
processing program”, University at Karlsruhe, Technical Report 2000-5, March 10, 2000

[5] Mathieu Fourment, Michael R Gillings, “A comparison of common programming languages used in
bioinformatics”, BMC Bioinformatics, 9:82, 2008

[6] Open Source Initiative, http://www.opensource.org/, accessed December, 2014

[7] Open Bioinformatics Foundation, http://www.open-bio.org/, accessed December, 2014

[8] M. Rahmania, D. Bastola, L. Najjar, “Comparative Analysis of Software Repository Metrics in BioPerl,
BioJava and BioRuby”, International Conference on Computational Science, ICCS 2012, Procedia Computer
Science 9 (2012) 518 – 521, 1877-0509, Published by Elsevier Ltd.

[9] T. Ryu, “Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for primitive bioinformatics
tasks and choosing a suitable language”, International Journal of Contents, Vol.5, No.2, June 2000

[10] Hernán F. Morales, Guillermo Giovambattista, “BioSmalltalk: A pure object system and library for
bioinformatics”, Bioinformatics Application Note, Oxford University Press, vol. 29, No. 18, Pp. 2355-2356,
2013

[11] K. Cara Woodwark, “Meeting Review: The Bioinformatics Open Source Conference 2001 (BOSC 2001)”,
Comparative and Functional Genomics, 2001; 2: 327–329

[12] BioPerl Web Information, http://bioperl.org, accessed December, 2014

[13] The Open Source Network, http://openhub.net, accessed December, 2014

[14] BioPerl Web Information, http://www.biopython.org, accessed December, 2014

 International Journal of Computer Sciences and Engineering Vol.-3(1), PP(157-164) Feb 2015, E-ISSN: 2347-2693

National Conference on Computational Technologies-2015,

Organized by Dept. of Computer Science & Application, University of North Bengal - India

[15] Ruby Programming Language, http://www.ruby-lang.org, accessed December, 2014

[16] IEEE Spectrum, http://spectrum.ieee.org/ns/IEEE_TPL/methods.html, accessed December, 2014

[17] Wiki Definition of Google Trends, http://en.wikipedia.org/wiki/Google_Trends, accessed December, 2014

[18] Hyunyoung Choi, Hal Varian “Predicting the Present with Google Trends”, Google Inc, April 10, 2009

[19] Liguo Yu, Stephen R. Schach, Kai Chen, “Measuring the Maintainability of Open-Source Software”, 0-7803-
9508-5/05, IEEE

[20] Wiki Definition of Open Source Community Support, http://en.wikipedia.org/wiki/Open-source_movement,
accessed December, 2014

[21] Carsten Kolassa, Dirk Riehle, Michel A. Salim, “The Empirical Commit Frequency Distribution of Open
Source Projects”, ACM 978-1-4503-1852-5/13/08

[22] Carsten Kolassa, Dirk Riehle, Michel A. Salim, “A Model of the Commit Size Distribution of Open Source”,
Proceedings of the 39th International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2013), LNCS 7741. Page 52-66. Springer Verlag, 2013

164

