
National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Available online at: www.ijcseonline.org

Page No. 078

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693

Design and performance evaluation of Advanced Priority Based Dynamic

Round Robin Scheduling Algorithm (APBDRR)

Debasmita Saha*

 Department of Computer Science

University of GourBanga

Malda, India

debasmita.saha@hotmail.com

 Ardhendu Mandal

Department of Computer Science and Application

University of North Bengal

Siliguri, India

am.csa.nbu@gmail.com

Abstract—In this paper we have proposed a improvised version of Round Robin Scheduling Algorithm by calculating

Dynamic Time Quantum (DTQ) and taking into consideration the priorities assigned with the processes. We have

compared the performance of the proposed Advanced Priority Based Dynamic Round Robin Scheduling Algorithm

(APBDRR) with the performances of Round Robin Algorithm (RR), Improved Shortest Remaining Burst Round Robin

Algorithm (ISRBRR) and Efficient Dynamic Round Robin Algorithm (EDRR). Experimental results show that the

proposed algorithm performs better than these algorithms in terms of Average Waiting Time(AWT) and Average

Turnaround Time(ATAT).

Keywords-CPU Scheduling; Round Robin Scheduling; Priority Scheduling; Waiting Time; Turnaround Time; Time Quantum;

Priority, Advanced Priority Based Dynamic Round Robin Scheduling Algorithm

I. INTRODUCTION

A process is an instance of a computer program in execution. Scheduling these processes is one of the most important jobs of
operating system. Scheduling is the process of switching the Central Processing Unit(CPU) amongst the processes so that the
CPU utilization can be optimized. There are different CPU Scheduling Algorithms which are used to accomplish this task. The
optimum scheduling algorithm should have minimum waiting time, minimum turnaround time and should utilize the maximum
CPU time.[7]

II. DEFINITION OF TERMS

� Ready Queue: The queue where the processes wait to be assigned to a processor.

� Burst Time: The time for which a process holds the CPU.

� Arrival Time: Time at which a process arrives at the ready queue.

� Throughput: Amount of work done per unit time by the processor.

� Waiting Time: Total time for which a process has been waiting in the ready queue.

� Turnaround Time:Total time taken between the submission of a program/process for execution and the completion of

the process.[5]

� Response Time: Time needed by a system to respond to a particular process.

III. PREIMINARIES

There are various CPU scheduling algorithms each with different working mechanism. To understand the proposed
algorithm, one needs to have the basic idea about two classical scheduling algorithms: Round Robin scheduling algorithm and
Priority based scheduling algorithm.

International Journal of Computer Sciences and Engineering Vol.-4(1), PP(78-84) Feb 2016, E-ISSN: 2347-2693

National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Page No. 079

• Round Robin scheduling: Round Robin scheduling is used in timesharing systems.[8] The basic mechanism is: a static
time slot or time quantum is assigned to each process and after the quantum is over, the CPU time is given to the next
process in the queue. The procedure continues until all the processes finish.The disadvantages of Round
RobinScheduling are higher waiting and response time, low throughput.

• Priority based scheduling: In these types of algorithms, the operating system assigns a fixed priority to every process,
and the scheduler arranges the processes in the ready queue in order of their priority. Lower priority processes get
interrupted by incoming higher priority processes. Waiting time and response time depend on the priority of the
process. Higher priority processes have smaller waiting and response times.

Most of the scheduling algorithms take into consideration one of the three parameters associated with the processes: arrival time,
burst time and priority assigned. [6]

In this paper it is tried to take into consideration two parameters: burst time and priority. In the proposed algorithm a dynamic
time quantum is calculated, which depends upon the burst time of the processes in the ready queue. After calculating the time
quantum, the processes will be assigned the CPU according to their priority. Then the remaining burst times will be calculated
and the priorities will change depending upon the remaining burst time. Process with less remaining burst time will get high
priority. Then all the processes will get the CPU again according to their new priorities.

IV. RELATED WORKS

A major disadvantage of Round Robin scheduling algorithm is static time quantum. Different approaches were taken in last few
years to improve the performance of Round Robin Scheduling by assigning dynamic time quantum like Min-Max Round
Robin(MMRR)[1], Average Max Round Robin Algorithm (AMRR)[2], Shortest Remaining Burst Round Robin Algorithm
(SRBRR), Improved Shortest Remaining Burst Round Robin Algorithm (ISRBRR)[3], Efficient Dynamic Round Robin
Algorithm (EDRR)[4] etc. In this paper the proposed algorithm tries to give better turnaround time and average waiting time
than ISRBRR and EDRR.

V. PROPOSED SCHEDULING ALGORITHM

A. Algorithm

The working principle of the proposed algorithm is as follows:

Step1: Sort the burst time in ascending order.

Step2: Get the Highest and Lowest burst time.

Step3: Calculate mean and median of the burst times.

Step4: If (mean>median)

TimeQuantum=ceil(sqrt((mean*highest)+(median*lowest))/2).

 Else If(mean< median)

TimeQuantum=ceil(sqrt((median*highest)+(mean*lowest))/2).

 Else

Time Quantum=ceil(mean/2).

Step5: Run the processes according to their priority.

Step6: Priorities will be changed according to their remaining burst time. Process with lesser burst time will get the higher

priority and process with higher burst time will get lower priority.

Step7: Repeat Step 6 until all the processes of ready queue complete their execution.

Step8: Calculate Average Waiting Time and Average Turnaround Time.

International Journal of Computer Sciences and Engineering Vol.-4(1), PP(78-84) Feb 2016, E-ISSN: 2347-2693

National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Page No. 080

B. Flowchart

T

F

 F T

Calculate

TimeQuantum=

ceil(mean/2)

Start

Input processes with

their burst time and

priority

Sort burst time andget

Highest and Lowest

Calculate Mean and Median

If

Mean>Median

TimeQuantum=ceil(sqrt(

(mean*highest)+(median

*lowest))/2)

If

Mean<Median

TimeQuantum=ceil(sqrt(

(median*highest)+(mean

*lowest))/2)

Run the processes according to

their priorities

Calculate the remaining burst

time for the processes and revise

the priorities

Run the processes according to

new priorities

Stop

Calculate Average Waiting Time

and Average Turnaround Time

International Journal of Computer Sciences and Engineering Vol.-4(1), PP(78-84) Feb 2016, E-ISSN: 2347-2693

National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Page No. 081

C. Illustration

Let us consider there are five processes (P0,P1,P2,P3,P4) with arriving time 0, Burst time (10,29,3,7,12) and

Priority(1,4,2,3,5) respectively. According to our algorithm first of all the burst times will be sorted in ascending order in order

to find the “Highest Burst Time” and “Lowest Burst Time”. In this example,

Highest Burst Time= 29

Lowest Burst Time= 3

Now we need to calculate “Mean” and “Median” of burst times. In this example,

Mean= 12.2

Median= 10

Now, as here Mean > Median (12.2 > 10)

So, we will apply the following formula to calculate the “Time Quantum”.

TimeQuantum=ceil(sqrt((mean*highest)+(median*lowest))/2)

In this example,

TimeQuantum = ceil(sqrt((12.2*29)+(10*3))/2) = 10

Now each process will get the CPU according to their priorities. Thus we get the following GANTT chart after all the

processes get the CPU for the first time.

P0

P2

P3

P1

P4

 0 10 13 20 30 40

In the next step, the remaining burst times of the processes

will be calculated. Thus, the remaining burst time of the processes (P0,P1,P2,P3,P4) will be (0,19,0,0,2) respectively. As the

process P4 has lower remaining burst time, it will be assigned higher priority, i.e, 1 and as process P1 has higher remaining

burst time, it will be assigned lower priority, i.e, 2. As, rest of the processes have 0 remaining burst time, we can conclude that

those processes finished their execution. So, only processes P1 and P4 will get the CPU for the next iteration. Thus the final

GANTT chart is as follows

P0

P2

P3

P1

P4

P4

P1

P1

 0 10 13 20 30 40 42 52 61

For this set of processes, after applying APBDRR we get the following Average Waiting Time (AWT) and Average

Turnaround Time (ATAT).

AWT = 17.0

ATAT = 29.2

VI. EXPERIMENTAL RESULT

Case 1: We have applied the APBDRR Algorithm on a set of five processes (P0,P1,P2,P3,P4) with arriving time 0, Burst time

(22,18,9,10,4) and Priority(4,2,1,3,5) respectively. Table-I shows the data set. Now, after using the algorithm we get the Gantt

chart shown in Figure-I. Table-II shows the results obtained for this data after applying RR, ISRBRR, EDRR and APBDRR.

Figure-II shows the comparison of AWT and ATAT for RR, ISRBRR, EDRR and APBDRR algorithms.

 Here, TQ= Time Quantum

 AWT= Average Waiting Time

 ATAT= Average Turnaround Time

Table-I

Process Arrival Burst Priority

International Journal of Computer Sciences and Engineering Vol.-4(1), PP(78-84) Feb 2016, E-ISSN: 2347-2693

National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Page No. 082

Name Time Time

P0 0 22 4

P1 0 18 2

P2 0 9 1

P3 0 10 3

P4 0 4 5

P2

P1

P3

P0

P4

P3

P1

P0

P0

 0 9 18 27 36 40 41 50 59 63

Figure-I: GANTT CHART FOR APBDRR

Table-II

Algorithm TQ AWT ATAT

RR
8 41.0 53.6

ISRBRR
15 40.2 52.8

EDRR
18 39.0 51.6

APBDRR
9 28.0 40.6

Figure-II: Comparative Analysis

Case 2:We have tested the proposed algorithm with 100 processes.We have fed the arrival time, burst time and priority

against each process. The input data set is shown in Table-III. Table-IV shows the results obtained for 100 data after

applying RR, ISRBRR, EDRR and APBDRR. Figure-II shows the comparison of AWT and ATAT for RR, ISRBRR,

EDRR and APBDRR algorithms.

Table-III: Data set of 100 processes

AT

BT

PRIORITY

AT

BT

PRIORITY

AT

BT

PRIORITY

AT

BT

PRIORITY

0 13 1 25 45 8 50 99 16 75 49 50

41

53.6

40.2

52.8

39

51.6

28

40.6

0

10

20

30

40

50

60

AWT ATAT

RR ISRBRR EDRR APBDRR

International Journal of Computer Sciences and Engineering Vol.-4(1), PP(78-84) Feb 2016, E-ISSN: 2347-2693

National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Page No. 083

1 38 53 26 37 49 51 66 66 76 95 62

2 83 74 27 45 39 52 74 52 77 26 64

3 93 10 28 66 5 53 90 69 78 4 8

4 50 4 29 72 36 54 57 79 79 7 9

5 23 70 30 14 3 55 54 32 80 51 10

6 87 78 31 70 30 56 45 22 81 67 79

7 98 4 32 77 15 57 25 76 82 63 51

8 39 54 33 98 24 58 53 78 83 21 11

9 12 44 34 73 73 59 100 34 84 47 26

10 83 38 35 35 16 60 19 52 85 35 21

11 31 67 36 55 11 61 88 30 86 93 67

12 4 15 37 15 4 62 78 35 87 74 76

13 82 35 38 55 67 63 4 5 88 50 15

14 22 68 39 24 13 64 93 13 89 44 64

15 13 49 40 33 60 65 93 59 90 60 36

16 65 2 41 44 36 66 47 31 91 10 12

17 25 53 42 82 45 67 60 57 92 45 72

18 5 2 43 60 24 68 20 22 93 12 69

19 96 35 44 82 51 69 6 7 94 39 70

20 53 5 45 8 16 70 39 11 95 5 6

21 97 5 46 24 37 71 90 8 96 46 36

22 39 19 47 79 21 72 51 42 97 72 56

23 66 18 48 60 36 73 3 6 98 15 13

24 13 65 49 21 2 74 65 63 99 49 51

Here, AT= Arrival Time, BT= Burst Time.

 Table-IV

Figure-III: Comparative Analysis

2600

2800

3000

3200

3400

AWT ATAT

RR ISRBRR EDRR APBDRR

Algorithm TQ AWT ATAT

RR
30 3222.055 3271.95

ISRBRR
70 3011.99 3271.95

EDRR
72 3004.59 3054.50

APBDRR
36 2853.36 2903.26

International Journal of Computer Sciences and Engineering Vol.-4(1), PP(78-84) Feb 2016, E-ISSN: 2347-2693

National Conference on Computational Technologies-(NCCT-2016),

Organized by Dept. of Computer Science & Application, University of North Bengal – India

Page No. 084

VII. CONCLUSION

From the above experimental results we can conclude that the proposed APBDRR algorithm performs better than Round Robin
Algorithm (RR), Improved Shortest Remaining Burst Round Robin Algorithm (ISRBRR) [3], and Efficient Dynamic Round
Robin Algorithm (EDRR) [4] in terms of Average Waiting Time and Average Turnaround Time. Again we can also conclude
that the algorithm works well and good for large number of processes also and is able to provide better Average Waiting Time
and Average Turnaround Time for bulk of processes.

REFERENCES

[1]. Sanjay Kumar Panda and Saurav Kumar Bhoi, “An Effective Round Robin Algorithm using Min-Max Dispersion

Measure”, International Journal on Computer Science and Engineering, 4(1), pp. 45-53, January 2012.

[2]. Pallab Banerjee, Probal Banerjee, Shweta Sonali Dhal, “Comparative Performance Analysis of Average Max Round

Robin Scheduling Algorithm (AMRR) using Dynamic Time Quantum with Round Robin Scheduling Algorithm using

Static Time Quanmtum”, International Journal of Innovative Technology and Exploring Engineering, 1(3), pp. 56-62,

August 2012.

[3]. P.Surendra Varma, “A Finest Time Quantum for Improving Shortest Remaining Burst Round Robin (SRBRR)

Algorithm”, Journal of Global Research in Computer Science, 4 (3), pp. 10-15, March 2013.

[4].

[5]. Raman, Dr.Pradeep Kumar Mittal, “An Efficient Dynamic Round Robin CPU Scheduling Algorithm (EDRR)”,

International Journal of Advanced Research in Computer Science and Software Engineering, 4(5), pp. 907-910, May

2014.

[6]. Silberschatz, A., P.B. Galvin and G. Gagne, Operating Systems Concepts. 7th Edn., John Wiley and Sons, USA., ISBN:

13: 978-0471694663, pp. 944.

[7]. Rakesh Mohanty, H. S. Behera, Khusbu Patwari, Monisha Dash, “Design and Performance Evaluation of a New

Proposed Shortest Remaining Burst Round Robin (SRBRR) Scheduling Algorithm”, Proc. of International Symposium

on Computer Engineering & Technology 2010, Vol 17, pp. 126-137, 2010 .

[8]. R. J. Matarneh, “Seif-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time of the Now

Running Proceses”, American Journal of Applied Sciences, 6(10), pp. 1831-1837, 2009.

[9]. H. S. Behera, R. Mohanty, and D. Nayak, “A New Proposed Dynamic Quantum with Re-Adjusted Round Robin

Scheduling Algorithm and Its Performance Analysis”, International Journal of Computer Applications, 5(5), pp. 10-15,

August 2010.

