

 © 2017, IJCSE All Rights Reserved 136

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-2 E-ISSN: 2347-2693

PMT_EDS: Pattern Matching as a Tool for Efficient and Dynamic

Search in the Large Files

Hrushikesava Raju S.
1*

 and Nagabhushana Rao M.
2

1*
PP.CSE.0158, Rayalaseema University, Kurnool (A.P.), India

2
Department of CSE, K L University, Vijayawada (A.P.), India

*Corresponding Author: hkesavaraju@gmail.com

Available online at: www.ijcseonline.org

Received: 29/Jan/2017 Revised: 04/Feb/2017 Accepted: 17/Feb/2017 Published: 28/Feb/2017

Abstract— There exist many pattern matching approaches, which consume more time and unable to perform

operations like recording history, finding number of times a pattern is found along with positions, page numbers etc.

and they have limitations in performing operations beyond their usual operations. The pattern matching using indexOf

method is proposed to find out a specific pattern or multiple patterns at a time in less time complexity. The additional

information is reported by recording history operation, information of where the pattern is located like page number,

number of times that pattern is found can be processed by searching operation, and multi-process operation searches

multiple patterns and returns their locations, page numbers in less time complexity by using indexOf metod as a thread

in achieving better efficiency. To do all these operations, an automated tool is required that asks for operation to

perform, required details to be provided in that operation, and results going to be illustrated or reported. Data pre-

processing is required when there is any inconsistency present in the dataset.

Keywords- pattern matching, statistics, searching, multi-process, time complexity, tool, PMT_EDS

I. INTRODUCTION

There were many pattern matching approaches are there for

searching a pattern in the small to moderate texts. But there

were no tool to search a pattern or multiple different patterns

in the huge sized text document or a pdf type document.

There are certain pattern matching approaches that are used

in the huge texts but they consume more time in the

searching process. All these are application programs that

ask the input such as a pattern or few patterns, and also a

text. In this processing, indices indicating starting index of

the pattern in the text are returned as an array. These

approaches consume more time in finding position of the

pattern. These approaches are specified in the [1,2,3]. But,

the present trend expecting new developed apps or apps as

tools for this pattern matching. Every approach specified in

the [1,2,3]are having drawbacks and one approach used as a

proposed methodology namely dynamic pattern matching

using indexof() method and data preprocessing. Compared

to this, the many pattern matching approaches illustrated

takes more time and that can be demonstrated in the chapter

results column. The time is measured in terms of number of

comparisons and is discussed through examples. Among

methods used, the overheads are listed in a table in

Introduction chapter. The lagging behind the existing

approaches are (i) They are supporting only limited texts and

one or few patterns to process (ii) When they are processing,

manual text only going to accepted but not large sized files

(iii) The time taken to search the pattern(s) is more

compared to the tool taken in consideration (iv) All the

existing approaches are standalone applications and that

requires setup the environment to execute the application

successfully (v) The appearance of the output can be

although clear but looking makes different feel compared to

the output of the tool. Hence, the trend expects migration

from standalone applications to the either apps or tools to be

developed to do the same. The existing pattern matching

approaches produce -1 in case of failure of the pattern in the

text or position of the pattern in the text. But, the

requirement needed now-a-days is number of times the

pattern is occurred in the large text file, page wise statistics

such as number of times the pattern occurred in each page

along with line number, and history of the (n-1) sized pattern

positions in the text document. To do this, some pattern

matching is to be taken as a tool(PMT_EDS) which serves

the expectations of the user. Hence, The pattern matching

with indexof() method can be taken as a tool which finds the

pattern or multiple patterns in less time generally O(1) time

complexity in case of success or failure also.

II. PROPOSED STUDY

The proposed approach provided in [1],[2],[3] taken in to

consideration, transform that into a tool with specific

features to perform such as taking the document, taking a

pattern or multiple patterns, displaying a report about

mailto:hkesavaraju@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 137

number of times those patterns are occurred in the document

along with page wise statistics. The approach taken in to

account is dynamic pattern matching using indexof()

method. The description of transforming this methodology

into a tool should be demonstrated in terms of operations

such as file submission where either word document or a pdf

file can be entered, searching where a file can be inspected

for a pattern or multiple patterns given as input, results

where the number of times the given pattern or multiple

patterns are occurred, and statistics where page-wise pattern

or patterns count can be displayed.

The tool PMT_EDS can be discussed as follows:

A) File Submission: Here, the file can be taken and enable

for further operations.

Pseudo_procedure file_submission()

Step1: Create a button named upload

Step2: select a file from the system directory and click on

open

Step3: The file can be saved and upload and take that file for

further opearations

B) Searching: Here, the pattern(s) can be searched and

indices are returned.

Pseudo_procedure searching(file,p[]):

Step1: Take the each pattern from p array using sub-script

(index)

Step2: develop the logic for searching

pc=page count=1

lc=100=number of characters in the line

pl=lines in a page = 25

beg=0; // indicating the starting index of each line

end=100; // end index of each line

k=0; // Navigation of each pattern

k1=0; // page loop variable

index_i1,index_i2,index_i3,….,index_IN-1=0; // maintains

the pagewise count

declare arrays pi1[20],pi2[20],pi3[20],. . . .,piN[20] // page-

wise count of patterns

int indices[2000]; // maximum length of indices and also

keeping track of pattern occurred final count

int twodimen[][]=new int[p.lenth][2000]; //two dimensional

array where first dimension navigates from pattern1 to

pattern and second dimension stores step-wise details of

occurred indices of patterns

fp=fopen(file,”r”)

if(fp!=EOF) {

for(pi=1;pi<=pc;pi++) //pages navigation,where pi is index

to read the characters, pc is number of pages

{ line=read(fp,beg,end); // reading each page

 for(pli=0;pli<=25;pli++) // where each line is

verified in each page {

while(fp!=’\n’) {

indices[0]=indices[0].arraycopy(line.indexOf(p[0]));

// storing p[0] occurred instances(subscripts) in indices[0]

array of a page // first pattern

indices[1]= indices[1].arraycopy(line.indexOf(p[1]));

// storing p[1] occurred instances in indices[1] array of a

page // second pattern

indices[2]= indices[2].arraycopy(line.indexOf(p[2]));

 // storing p[2] occurred indices in indices[2] array of a page

// third pattern

….

….

indices[N-1]=indices[N-1].arraycopy(line. indexOf(p[N-

1]));

// storing p[N-1] occurred indices in indices[2] array of a

page // N-1 pattern

} // while counts the no. of times a pattern occurred in same

line

index_i1+=indices[0].length(); // finding no. of entries for

pattern1 in the array of a particular page

pi1[k1]=pi1.arraycopy(index_i1); // storing locations of the

first pattern in the pi1 array

index_i2+=indices[1].length(); // finding no. of entries for

pattern2 in the array of a particular page

pi2[k1]=pi2.arraycopy(index_i2); // storing locations of the

second pattern in the pi2 array

index_i3+=indices[2].length(); // finding no. of entries for

pattern3 in the array of a particular page

pi3[k1]=pi3.arraycopy(index_i3); // storing locations of the

third pattern in the pi3 array

……………

……………

index_IN-1+=indices[N-1].length();//finding no. of entries

for patterN-1 in the array of a particular page

piN-1[k1]=piN-1.arraycopy(index_IN-1); //storing locations

of the last pattern in the piN-1 array

} // for iteration

k1++; // page loop variable to be incremented for further

pages

twodimen[][]=twodimen.arraycopy(*pi1); // storing first

pattern indices in the final array

// updating twodimensional array with page-wise pattern

count

twodimen[][]=twodimen.arraycopy(*pi2); // storing second

pattern indices in the final array

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 138

// updating twodimensional array with page-wise pattern

count

twodimen[][]=twodimen.arraycopy(*pi3); // storing third

pattern indices in the final array

// updating twodimensional array with page-wise pattern

count

…

…

twodimen[][]=twodimen.arraycopy(*PiN-1); // storing last

pattern indices in the final array

//updating twodimensional array with page-wise pattern

count

pli=0; // for second page onwards, this index became 0 for

each new page

beg+=100; // transferring into next lines

end+=100; // pointing page end line size

pc++; // tracking of number of pages by assuming 100

columns size and 100 lines in a page

 } // end of the page count

 } // this is repeated until there are no more characters to

read from the file.

The above code involves navigating from first page to last

page, in each page number of times the first pattern is found

can be noted. Although it is noting, the final number of

times the pattern occurred can be returned and displayed.

The advantage of this process is all patterns given for

searching can be identified simultaneously in when

searching in each page. This searching module is crucial and

is important in doing the remaining operations.

C) Results: In this, the number of times, each pattern is

occurred can be displayed.

Pseudo_procedure PMT_EDS_results(twodimen[][])

Step1: take the loop (while) for first dimension index to last

index i.e as long as condition is true

 Step1.1: Display from first index dimension value to

last dimensional value

 Step 1.2: increment loop variable

The following is the pseudo procedure that evaluates the

what the result to get.

Pseudo_procedure results_PMT_EDS(p[],indices[]):

i=0 // loop variable from first pattern to last pattern in the

pattern array p[]

while(i<p.length) {

Display p[i] is occurred indices[i] times in the file

// use output function depending on the language used. For

instance, assume c language, the function used is printf()

} // closing of while

This module displays the each pattern and their count.

D) Statistics: Here, pattern occurrence is displayed based on

concerned page.

Pseudo_procedure PMT_EDS_statistics(pi1,pi2,pi3,. . . ,

piN-1):

Step1: take a loop called while with condition

Step2: Call arrays pi1,pi2,pi3, , piN-1, use the

printing(output) method

This method displays pattern1 in each page-wise occurrence,

pattern2 in each page-wise occurrence, and so on until

patternN-1 in each page-wise occurrence.

The following is the pseudo procedure to display statistics

such as each pattern page-wise occurrence details:

Pseudo_procedure

statistics_PMT_EDS(pi1,pi2,pi3,…….,piN-1) where

pi1,pi2,pi3,…….,piN-1 are patterns count:

Step1: Take arrays indices[0], indices[1],

indices[3],…..,indices[N-1] as pattern occurred indices

overally.

 for(i=0;i<=N-1;i++) {

display indices[i] array elements

display each pattern occurred indices from pi[i]

 } // iteration

This second phase involves developing a tool named

PMT_EDS(Pattern Matching as a Tool for efficient and

dynamic Searching for large files).

Now, the following flowchart displays the working of the

tool called PMT_EDS:

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 139

The above tool should be required to know about the pattern

matching statistics in the given file uploaded. As of now,

there are only few methods are used for knowing the indices

of the patter(s). There is no approach available to know the

statistics about the pattern(s) occurrence.

III. Results

This tool appears in terms of screen shots where each screen

shot denotes the functionality of the operation that is to be

performed. The screen shots are File Submission tab in

which any file can be uploaded with limitation in size,

searching tab screen shot asks for pattern(s) to be find out,

results tab screen shot displays the number of times, each

pattern is occurred throughout the whole document, and

statistics tab screen shot displays page-wise information

about each pattern occurrence in the whole document.

The first screen looks like as follows:

The second screen shot is uploading the file using File

Submission tab:

After the file is selected, file taken in one file pointer in read

mode. The searching operation screen shot(third window) to

be displayed as follows:

In searching, the screen shot(fourth) that asks for each

pattern value so that they can be inspected.

It is as displayed as follows:

In searching, the screen shot (fifth) that displays each pattern

the number of times they occurred throughout the entire

document:

Assume there are only 5 pages. The Next operation to

perform is statistics tab. The appearance of the statistics

screen shot (sixth) is as follows:

The time to search each pattern in the large text file takes

O(1) every time is O(1). It is the best time ever no other

pattern matching approach is consuming. This tool can

search all the patterns in less time so it is efficient. This tool

also searching all the patterns in dynamically in the sense

spontaneously.

The following shows time when the comparison taken

between the tool and traditional methods based on size:

In above graph, The automated tool takes only O(1) for each

pattern search in the large file.

IV. CONCLUSION

There were many drawbacks of using most of traditional

methods for finding a pattern(s) in the text such as more

time consuming in searching, lot of preprocessing is taken

before searching, unable to process files, unable to

simultaneously processing pattern(s). Hence, To overcome

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 140

all the pitfalls, the result considered is a tool which finds

pattern(s) in less time, no preprocessing is required i.e. in

single shot or stretch the pattern(s) bibliography can be

known, support searching over files, and support processing

multiple patterns at a time (simultaneous processing). All

operations are included in the tool in order to process the

pattern. Hence, pattern matching is made as a tool and is

user friendly. The efficiency and dynamism is better

compared to traditional approaches. In future, any extra

operations than existing operations (searching, results, and

statistics) that this tool going to be supported are provided.

REFERENCES:
[1]. Hrushikesava Raju S., Nagabhushana Rao M.,

“Improvement of Time Complexity on Pattern Matching

using One -Time Look Indexing and Data Preprocessing”,

IJCSE, Vol.4(11),PP.100-106,2016 E-ISSN:2347-2693.

[2]. Hrushikesava Raju S. ,Swarna Latha T.,“Dynamic Pattern

Matching: Efficient Pattern Matching using Data

Preprocessing with help of One time look indexing method”,

IJARCET,Vol.2(2),pp.592-599, 2013,ISSN:2278-1323.

[3]. Hrushikesava Raju S., Nagabhushana Rao M.,“ “Pattern

Matching Using Data Preproc-Essing With The Help Of One

Time Look Indexing Method”, IJPT, Vol.8(3),pp.14749-

14756, ISSN:0975-766X.

[4]. Michael Good Rich T. and Roberto Tamassia, “Data

Structures and Algorithms in java”, Fifth Edition,

January,2010.

[5]. Akepogu Ananda Rao and Radhika Raju polagiri, “Data

Structures and Algorithms using C++”, Kindle

Edition,Pearson, July,2010.

[6]. Donald Adjeroh, Timothy Bell and Amar Mukharjee,“The

Burrows Wheeler Transform”, Springer, July,2008.

[7]. Machael McMillan,“Data Structures and Algorithms using

Visual Basic.NET”, Cambridge Edition, March,2005.

[8]. Svetlana, Eden, “Introduction to String Matching and

modification in R using Regular expressions”, March,2007.

[9]. Jeffrey.E.F.Fredl,“Mastering Regular Expression”, 3rd Edition,

O,reilly publications,December,1998.

[10]. Regular expressions and Matching in Modern Perl 2011-12

edition,ISBN-10: 1680500880,ISBN-13: 978-

1680500882,October,2015.

[11]. S. S. Sheik,Sumit K. Aggarwal,Anindya Poddar, N.

Balakrishnan,and K. Sekar ,”A FAST Pattern Matching

Algorithm”, J. Chem. Inf. Comput. Sci. 2004, 44, 1251-1256.

[12]. Micheline Kamber and Jiawei Han, “Data Mining Concepts

and Techniques”, Second Edition,March,2006.

Author’s Profile

Mr. S. HrushiKesava Raju, working as a

Professor in the Dept. of CSE, Siddharth

Institute of Engineering and

Technology(SIETK), Narayanavanam Road,

Puttur. He is pursuing Ph.D from Rayalaseema

University in the stream of CSE. His areas of

interest are Data Mining, Data Structures, and

Networks.

Dr. M.Nagabhushana Rao, working as

Professor in the Dept. of CSE, K L University,

Vijayawada, A.P. He had completed Ph.D from

S.V. University in the area of Data mining. He

is presently guiding many scholars in various

disciplines.

