An algorithm for Construction of Infectious Viroid

A.K.Samanta¹, Syed Mahamud Hossein^{2*}, Susanta Mandal³, Shankar Kumar Roy⁴, Apurba Mondal⁵

> ¹Jalpaiguri Govt. Engg. College, India ²Regional Office, DVET, Govt. of West Bengal, India ^{3, 4&5}Jalpaiguri Govt. Engg. College, India

^{*}Corresponding Author: mahamud123@gmail.com, Tel.: 9434504098

Available online at: www.ijcseonline.org

Accepted: 19/Sept/2018, Published: 30/Sept/2018

Abstract:- An algorithm have been undergone growth which make able most good selection into line looking for between 2 order, one is question sequence and another is man giving food, room and so on order looking for homologues has become a regularly order operation of biological orders on a 32 bit person computer. The high degree of matching position on man giving food, room and so on order and question subsequence is to make out quickly and clearly a group of order that is given question order be part of to An Algorithm is presented that takes more chances of the high degree of homology between such orders to make an into line of the matching regions. It does not have need of knowledge of a starting homology band, neither complex memory square measure, even for orders of several kilo bases, and it can overcome complex opening, nothing in between or different bands. This is a small, able to be taken about, effecting on one another, front end road map person one is going be married to be used to get out the fields, ranges of matching between man giving food, room and so on order and question subsequence. Since this road map have been written originally in the C language, it is possible to run in other PCs with small changes. The road maps run on the IBM personal knowledge processing machine, has need of 512k, without addition of hardware expect for thin, flat, round plate drives and printer. The execution is quite tightly, all the operations are does in less than one of seconds, depending on the needed work and on the order measure end to end. The going round in circles RNA smallest units of potato spindle under earth stem viroid was used as a question order & normal plant such as plant with soft red yellow fruit plant used as a man giving food, room and so on order input facts for making clear by reasoning the operation of the road map. The facts in these records may be used in many applications in future. The knowledge base is ready either on magnetic tape, on hanging down, not stiff diskettes, or online form. The main try to discover the highly diseased special field, range of disease and keep from opening this field, range to keep safe from viroid interaction keyword homology.

Keyword- Homology.

I. INTRODUCTION

Viroids are the smallest without outside control copying pathogenic agents experienced day and cause transmissible diseases in several by money and goods important the years produce plants[1,2], especially species of the solanaceae[3-6], strong decision of the nucleotide order of several viroids[7-14], and observations of the physical-chemical properties of viroids[15] have on condition that a detailed design to be copied of viroid structure. All experienced viroids are small, unencapsidated, and covalently closed circular single stuck RNA molecules with much coming after first or chief structure. Knowledge of the mechanisms of viroid copying and symptom induction has stored more slowly than knowledge of their structure. Evidence that viroids do not code for proteins suggests that the biological properties of viroids are the outcome of straight to viroid host smallest units effects on one another, for this reason viroids

system. It has been put forward that disease induction might outcome from viroid in the way with host Gene expression[16]. RNA genomes that have been copied into DNA can be studied in a like taste on condition that the DNA is also biologically active. Development of disease symptoms in a host plant when diseased by one pathogen is the outcome of complex pathogen host effects on one another. The pathogen usually has pathogenicity that making decisions possible that get the types and degrees of seriousness of host symptoms. In the host changed formed of small unit's purposes, uses lead to changes in physiology and development that exhibit as disease symptoms. in this way, view, knowledge the formed of small units and smallest units mechanisms of disease formation will not only make ready the base for the development of based on reasoning moves near to fight pathogen infection but also will make ready knowledge about the basic formed of small units

can be taken into account a least genetic and biological

processes that under normal plant growth and development[17] viroid infections provides a simple testing system in which to work place straight to effects on one another between a pathogenic RNA genome and the host without making orders for computer capacity, the viroid RNA genome and its copying intermediate acts between among directly with host parts for nearly all aspects of the infection process, including copying, intracellular movement, systemic intercellular. movement movement, and pathogenicity[18]. The pleiotropic purposes uses of the viroid RNA genome are strange given its small size, to do with structure simpleness and non-coding capacity because viroid pathogenesis is an outcome of straight to RNA cellular factor effects on one another, viroids are taken into account to be part of to a group of non-coding RNAs that keep control by rules formed of small units purposes, uses through means other than by making orders for computer proteins for specific[19] purposes uses. In this context making clear the smallest units mechanisms of viroid disease may help us get through knowledge the mechanisms of the RNA control of formed of small units processes. Potato spindle under earth stem viroid is the sort species of the pospiviroidae family, taken on a rod shaped[20] coming after first or chief structure in their native state and some viroids in the avsunviroidae family have branched structures[21]. Changes in the complete Gene expression designed of diseased plants also have been described. In general, however we have little knowledge of how a specific PSTVD order or structure can make come to mind separate changes in host Gene expression that lead to changes in specific formed of small units processes and the development of one symptoms. We have taken a complete way in that includes smallest units, formed of small units, biophysical and whole plant analysis to make observation of the mechanisms of viroid pathogenicity using PSTVd infection tomato as a testing system. Close relation this symptom is put off unit growth and young plant development, marked by the kept back expression of a plant with soft red yellow fruit expansion Gene begin part was made clear of in unit growth. The biological follows up of these results are had a discussion about. Potato spindle under earth stem viroid, the begin caused agent of potato spindle under earth stem disease, is a small RNA of about 8x^46 104 dalton (22,3) that exists without poly(A) or poly(C) orders in its structure. This free RNA is able to systematically get person moved plants of several families, and its appears to replicate[23] without outside control in readily moved prison rooms. PSTV is of enough chain length to code for a polypeptide of about 1 x⁴⁶ 104 dalton, however in vitro studies indicated that PSTV is not gave sense of words in several cell free. Systems which synthesize[24] protein wheather PSTV copying has to do with a DNA intermediate is not experienced, but near in time evidence showed that PSTV copying in plant with soft red yellow fruit leaf long bits or plant with soft red yellow fruit nuclei is put off in the existence of actinomycin in D, an outcome which suggests the sense of begin mixed up of DNA. These genes make to a rule products had to do with in defense move, prison room wall structure, chloroplast fuction, protein metabolism and other different group events. The viroid RNA genomes do not put into sign proteins and are not encapsidated[1,25] though that is so, viroids can replicates without outside control, move systematically within a diseased plant and cause diseases. The viroid genome must acts between, among directly with host encoded factors to do these functions. Therefore viroid infection provides a nothing like it system to make observations about how a host gives a reaction to infection by a pathogenic RNA viroids have addition of more chances for having under observations hostathogen interactions, morphological and cytological changes connected with viroid infection have been well printed materials of a certain sort symptoms cover stunting, leaf epinasty, and chlorosis. At the formed of small units level, the most able to be seen symptom is twisting of unit walls and of the plasma membrance[26-29], chloroplasts[30-32] and microchondria[33]. The smallest units mechanisms of viroid pathogenicity[34-36] as well as host moves, are poorly got clearly viroid infection causes stores of pathogenesis related proteins. Potato spindle under earth stem viroid infection also increases the expression of proteins kinase PKV[37].

Procedure

sequence(fpv, fpplant : FILE pointer) Var : K, word size : integer limit, max_match, max_match2, cur_word, cur_word2 : integer max word, max word2, word limit, word limit2 : integer match, match2 : integer next_byte, next_byte2, match_byte, match_byte2 : integer word1[500][50], word2[500][20] : integer array buffer[20] : integer array ch,ch2 : character c, b, i, j, c, flag : integer fp2 : FILE pointer begin : display "Enter word size:"; accept(word size); c:=0; b:=0, ch = A';while (ch !='EOF') do begin: c1 :=0; while b<20 do begin: ch ; =getchar(fpv); buffer[b++] : = ch; end: { while b < 20 } flag:=0; i:=0; whilei<b-(wordsize-1) do begin: k:=0; while k<word size

if buffer[i+k]='0' then word1[c1][k]='t' else word1[c1][k]:=buffer[i+k] k++; end : { while k<word_size} c1: = c1+1;flag : = 0; k:=0; while k<word_size do begin: if buffer[i+k]='u' then flag :=1; k++; end: if flag<>1 then begin: for k<=word_size do begin: word[c][k]:=buffer[i+k]; end;{for k<word_size} c++; end;{if flag<>1} end:[while i<b-(wordsize-1)] do while ch<> EOF begin: j:=0; while j<word size-1; buffer[j]:=buffer[b-(word_size-j-1)]; b:=word_size-1; do while b<20 begin: ch:=fgate(fp); ifch<>EOF than buffer[b++]:=ch; else break: .,end: {do while b < 20 } i:=0 fori< b-(word_size-1) do begin: k:=0 while k<word size if buffer[i+k]='u' then word[c1][k]:='t'; else word[u][k]:=buffer[i+k]; k++; end;{ while k<word_size}</pre> c1++; flag:=0;k:=0; while k<word_size do begin if buffer[i+k]='u' then flag=1; k++; end;{while k<word_size} if flag<>1 then

begin: for k<word size do begin: word[i][k]:=buffer[i+k]; k++: end; { for k<word_size } c++; end;{if flag<>1} end: end; word limit:=c; word limit2:=c1; if(c1>c) then limit:=c; else limit:=c1; max_match:=0; max_match2:=0; fp2:=SEEK_SET; fpplant:=SEEK_SET; fp2:=fopen(plant); do while ch<>EOF begin: ch:=fgate(fpplant) ch2:=fgate(fp2) ifi< word limit ifch=word[i][u] begin: match:=1; cur_word:=ftell(fp); for(j:=cur_word=1;j<word_limit;j++);</pre> begin: ch=fgate(fpplant); ifch=EOF break; ifch=word[j][0] match++; else break; end {for} if match>(max match+(word size-1))) begin: max_match:=match-(word_size-1); max word:=cur word; match_byte:=next_byte-1; end; fset(fp,next byte,SEEK SET); end; end; end{while ch<>EOF} display"max match", max match; display"match at", cur word; display"matchpos", match byte; end{procedure}

II. METHOD

Motivation for similarity analysis We saw that similarity searching and sequence alignment is

© 2018, IJCSE All Rights Reserved

an important requirement for fragment assembly. More so, there is a need to build a notion of inexact matches, so that errors are accounted for. We first look at some other contexts in biology where similarity analysis is useful.

Most recent biological sequences are stored in huge databases. When people try to match virus sequences with host existing ones in the databases, similarity measures again come into play.

Besides, any attempt to mine these huge sequence databases for interesting and repeating sequence patterns also requires a good handle over similarity measures.

Now is the task of analyzing the sequences and understanding similarity is the first step towards performing such analyses. We first describe the notion of similarity semi-formally and also look at some approaches towards obtaining pair wise similarity measures.

Similarity

Consider the sequences ACTCCG and ACTCCG. To define similarity, perhaps it is useful to first introduce the notion of "distance" between two strings. The distance between two strings is zero if they are exactly the same.

Alignment of sequences

We now look at the notion of pair wise alignment. Consider any two sequences, of arbitrary lengths each. Next, by inserting 'spaces' in either sequence we can ensure that every character in one sequence is opposite a character or a space in the other sequence. No space is allowed to be opposite another space (since it is not useful). Thus, end-to-end even though the two sequences we started out with may be of different lengths, they end up being 'aligned' due to the space insertion procedure. For every two sequences, there are huge permutations of possible alignments (cubic in the length of sequences). Some may be 'better' than the others. The alignment procedure itself can be visualized as a series of insert, delete operations. This implies that edit distances are somehow related toalignments.

Eg: For the sequences (the terms sequences and strings are used interchangeably) ACTCCG and ACACCG could have alignments, ACT_CCG or _ACTCCG AC_ACCG AC_ACCG

Thus, from amongst several possible alignments we need to consider the 'good' ones. Ascoring function determines this notion of goodness of alignment. Let us look at an

Example scoring function. We can compute the distance between alignments, in such a way that. Cost of a match is 0 (when the sequence on top and below have the same ithcharacter).

Local alignments

Often biological sequences under consideration are very long, and will surely not besimilar to each other globally. To find small substrings that occur quite frequently acrosssequences is of interest. These are referred to as local alignments. The problem preciselystated is, given two strings S1 and S2, to find substrings A and B of S1 and S2respectively, whose similarity is maximum over all pairs of substrings of S1 and S2.

Intuitively this refers to the best local substring match in the two given sequences. Forexample, if ACTAGTTAA and GTATAAGCC are two sequences, then the localalignment TAG

ΤΑ Τ

has the maximum similarity than all other substring pairs. Local alignments are computed as follows: In the (n, m) graph, let each node, (i, j) store a value corresponding to similarity measure of the best suffix alignment that can be produced till there (between the suffixes of S1[1..i] and S2[1..j]). Then, the best local alignment corresponds to the best suffixalignment at the node that has the best similarity measure in the n x m nodes.

Again this value at each node can be computed using a recurrence relation. The first row and column nodes have entries initialized to zero.

$$A[i, j] = max$$

$$A[i, j-1] + g$$

$$A[i-1, j-1] + p(i, j)$$

$$A[i-1, i] + g$$

Δ

Normally the optimal alignment is found within a narrow band around the diagonal. So some heuristics use this knowledge to restrict the search space.

Input Sequence : CGGAACTAAAC TCGTGGTT CCTG TGGT

1) Break the query sequence into words

CGGAACTAAACTCGTGGTTCCTGTGGT

GAAC

GGAA

CGGA

2) Search for word matches (also called high-scoring pairs, or HSPs) in the database sequences.

GAATTCCATCGGAGGAATTAAAGTGATTAATGTACT TAGCTTTG

3) Extend the match until the local alignment score falls bellow a fixed threshold (the most recent version of BLAST allows gaps in the extended match)

GAATTCCATCGGAGGAATAAAGTGATTAATGTACTT AGCTTTG

Materials

LOCUS PSU23058 359 bp RNA circular VRL 02-APR-1995 DEFINITION Potato spindle tuber viroid (PSTVd) strain RG 1, complete genome.

ACCESSION U23058

III. RESULT DISCURSIONS

The different numbers matching probability are found in different orientation found like DNA Vs. DNA match found in 61 places, DNA Vs. RNA in 27 places, DNA Vs. cDNA in 61 places, DNA Vs. cRNA in 27 places, RNA Vs. DNA in 27 places, RNA Vs. cRNA 61 places, RNA Vs.cDNA 27 places, RNA Vs. cRNA in 61 places cDNA Vs.cDNA in 61 places cDNA Vs. cRNA in 27 places, cDNA Vs. cDNA in 61 places, cDNA Vs. cRNA in places, cDNA Vs. cDNA in 27 places, cRNA Vs. RNA in 61 places, cRNA Vs. DNA in 27 places, cRNA Vs. RNA in 61 places, cRNA Vs. DNA in 27 places, cRNA Vs. RNA in 61 places, cRNA Vs. DNA in 27 places, cRNA Vs. RNA 61 in places.

It shown that maximum numbers of match found in DNA Vs. DNA, DNA Vs. cDNA, RNA Vs. RNA,RNA Vs. cRNA, cDNA Vs.cDNA,cRNA Vs. RNA,cRNAVscRNA 61 and minimum numbers of match found in DNA Vs. RNA,DNA Vs. cRNA,RNA Vs. DNA,RNAVs. cDNA,cDNA Vs. RNA,cDNA Vs. cRNA,cRNA Vs. DNA,cRNA Vs. DNA 27. So, minimum numbers of match orientation are omitted/ not consider our result discussion because only maximum matching position are target in our result where maximum number of amino acid are affected.

IV. CONCLUSIONS

The algorithm/program is a small, portable, interactive, frontend program intended to be used to find out the regions of matching between host sequence and query subsequences. To find out the maximum matching position where maximum number of codon is effected that means corresponding amino acid is effected, as a result on that particular positioning the amino acid corresponding protein formation is effected as a result the disease on the host. Our target our main aim or goal is to detect the highly infected specific region of infection and seal this region to protect from viroid interaction.

ACKNOWLEDGEMENT

The satisfaction we have on the successful completion of the project will be incomplete without the mention of the people whose constant endeavor guidance and encouragement has helped us to achieve success. Firstly, we offer our sincere gratitude to the Department Of Computer Science, VIDYASAGAR UNIVERSITY, for giving us the opportunity to pursue this project during our internship and thereby helping us to improve our career. We are also grateful Prof.Dr.Biswapati Jana for their support and invaluable help during the entire duration of the project. Their inspiring presence, constant encouragement, meticulous guidance and painstaking efforts helped us to tide over the problems encountered during the various phases of the project.

REFERENCES

- Diener, T. O. 2001. The viroid: Biological oddity or evolutionary fossil? Adv. Virus Res. 57:137-184.
- [2.] Garnsey, S. M., and Randles, J. W. 1987. Biological interactions and agricultural implications of viroids. Pages 127-160 in: Viroids and viroidlike pathogens. CRC Press, Boca Raton, FL, U.S.A.
- [3.] Sogo, J. M., Koller, T. &Diener, T. 0. (1973) "Potato spindle tuber viroid. X. Visualization and size etermination by electron microscopy," Virology 55, 70-80.
- [4.] O'Brien, M. J. &Raymer, W. B. (1964) "Symptomless hosts of the potato spindle tuber virus," Phytopathology 54, 1045-1047.
- [5.] Singh, R. P. (1973) "Experimental host range of the potato spindle tuber 'virus'," Am. Potato J. 50, 111-123.
- [6.] Hadidi, A. &Fraenkel-Conrat, H. (1974) "Host-range and structural data on common plant viruses," in andbook of Genetics,ed. King, R. C. (Plenum Press, New York), Vol. 2, pp.381-413.
- [7.] Gross, H.J..Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H., and Sanger, H.L. (1978) Nature 273, 203-208.
- [8.] Gross, H.J., Krupp, G., Domdey, H., Raba, M., Jank, P., Lossow, C., Alberty, H., Ranm, K. and Sanger, H.L. (1982) Eur. J. Biochem. 121,249-257.
- [9.] Gross, H.J., Liebl, U., Alberty, H., Krupp, G., Domdey, H., Ramn, K., and Sanger, H.L. (1981) Bioscience Reports 1, 235-241.
- [10.] Haseloff, J. and Symons, R.H. (1981) Nucleic Acids Res. 9, 2741-2752.
- [11.] Visvader, J.E., Gould, A.R., Bruening, G.E., and Symons, R.H. (1982) FEBS Letters 137, 288-292.
- [12.] Symons, R.H. (1981) Nucleic Acids Res. 9, 6527-6537.
- [13.]Haseloff, J., Mohamed, N.A., and Symons, R.H. (1982) Nature 299, 316-321.
- [14.] van Wezenbeek, P., Vos, P., van Boom, J. and van Kammen, A. (1982) Nucleic Acids Res. 10, 794-7957.
- [15.] Gross, H.J. and Riesner, D. (1980) AngewandteChemie (English edition) 19, 231-243.

International Journal of Computer Sciences and Engineering

Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

- [16.]Flores, R., Di Serio, F., and Hernández, C. (1997). Viroids: The nonencoding genomes. Semin. Virol. 8, 65–73.
- [17] Kasschau, K., Xie, Z., Allen, E., Llave, C., Chapman, E.J., Krizan, K.A., and Carrington, J.C.(2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4,205–217.
- [18.] Hull, R.(2002). Matthew's Plant Virology, 4th ed. (San Diego, CA: Academic Press).
- [19] Storz, G. (2002). An expanding universe of noncoding RNAs. Science 296, 1260–1263.
- [20.] Flores, R., Randles, J.W., Bar-Josef, M., and Diener, T.O.(2000).Subviral agents: Viroids. In Virus axonomy, Seventh Report of the International Committee on Taxonomy of Viruses, M.H.V. van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Manilof, M.A. Mayo, D.J. McGeoch, C.R. Pringle, and R.B. Wickner, eds (San Diego, CA: Academic Press), pp. 1009–1024.
- [21] Itaya, A., Matsuda, Y., Gonzales, R.A., Nelson, R.S., and Ding, B.(2002). Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol. Plant-Microbe Interact. 15, 990–999.
- [22.] Diener, T. 0. & Smith, D. R. (1973) "Potato spindle tuber viroid.IX. Molecular-weight determination by gel electrophoresis of formylated RNA," Virology 53,359-65.
- [23.] Diener, T. 0. (1971) "Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. Ill. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ," Virology 43,75-89.
- [24.] Davies, J. W., Kaesberg, P. &Diener, T. 0. (1974) "Potato spindle tuber viroid. XII. An investigation of viroid RNA as a messenger for protein synthesis," Virology 61, 281-286.
- [25.]Flores, R., Di Serio, F., and Hernández, C. 1997. Viroids: The nonencoding
- genomes. Seminars Virol. 8:65-73.
- [26.]. Momma, T., and Takahashi, T. 1982. Ultrastructure of hop stunt viroid-infected leaf tissue. Phytopathol. Z. 104:211-221.
- [27.].Paliwal, Y. C. and Singh, R. P. 1981. Cytopathological changes induced by potato spindle tuber viroid in Scopoliasinensis. Can. J. Bot. 59:677-682.
- [28.].Semancik, J. S., and Vanderwoude, W. J. 1976. Exocortis viroid: Cytopathic effects at the plasma membrane in association with pathogenic RNA. Virology 69:719-726.
- [29.].Wahn, K., Rosenberg-De Gomez, F., and Sänger, H. L. 1980. Cytopathic changes in leaf tissue of Gynuraaurantiacainfected with

the viroid of citrus exocortis disease. J. Gen. Virol. 49:355-365.

- [30.] Da Graça, J. V., and Martin, M. M. 1981. Ultrastructural changes in avocado leaf tissue infected with avocado sunblotch. Phytopathol. Z. 102:185-194.
- [31.] Hari, V. 1980. Ultrastructure of Potato spindle viroid-infected tomato leaf tissue. Phytopathology 70:385-387.
- [32.] Lawson, R. H., and Hearon, S. S. 1971. Ultrastructure of chrysanthemum stunt virus-infected and stunt-free mistletoe chrysanthemum. Phytopathology 61:653-656.
- [33.]. Gadea, J., Mayda, M. E., Conejero, V., and Vera, P. 1996. Characterization of defense-related genes ctopically expressed in viroid-infected tomato plants. Mol. Plant-Microbe Interact. 9:409-415.
- [34.] Garnsey, S. M., and Randles, J. W. 1987. Biological interactions and agricultural implications of viroids. Pages 127-160 in: Viroids and viroidlike pathogens. CRC Press, Boca Raton, FL, U.S.A.
- [35.]Lucas, J., Camacho Henriquez, A. C., Lottspeich, F., Henschen, A., and Sänger, H. L. 1985. Amino acid sequence of the 'pathogenesisrelated' leaf protein p14 from viroid-infected tomato reveals a new type of structurally unfamiliar proteins. EMBO (Eur. Mol. Biol. Organ.) J.4:2745-2749.
- [36.] Vera, P., and Conejero, V. 1990. Citrus exocortis viroid infection alters the in vitro pattern of protein phosphorylation of tomato leaf proteins.Mol. Plant-Microbe Interact. 3:28-32.
- [37.]Hammond, R. W., and Zhao, Y. 2000. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid.Mol. Plant-Microbe Interact. 13:903-910.

Authors Profile

Syed Mahamud Hossein : He received his post graduate degree in Computer Applications from Swami Ramanand Teerth Marathawada University[M.Sc.-C.A.], Nanded and Master of Engineering in Information Technology[M.E.-I.T.] from West Bengal University of Technology, Kolkata. He has worked as the Senior Lecturer in Haldia Institute of Technology, Haldia, Lecturer on contract basis in Panskura Banamali College, Panskura and Lecturer (Post Diploma) in Computer Application at Iswar Chandra Vidyasagar Polytechnic, Govt. of West Bengal, Jgargram. His research interests includes **Bioinformatics**, Compression Techniques & cryptography, Design and Analysis of Algorithms, & Development of Software Tools.

International Journal of Computer Sciences and Engineering

Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

		<u>Result:</u>																											
Seq												-		-															
uen				a r			DNA ValeBNA			BNA Valo ¹ NA		PNA Ve oPNA				oDNA Ve BNA				cDNA Vs. cBNA		CRNA VA DNA		CBNA Ve BNA					
Ce	Total=6	61	Total=27 Total=61			Total=27		Total=61	Total=27		Total=61		Total=61		Tot	Total=27		Total=61		Total=27		Total=27		Total=61		al=27	Total=61		
Sr.	No). of	No.	of	No.	of	No. o	f No. of	No. of		No. of		No. of		Vo. of	N	lo. of		No. of		No. of		No. of	1	No. of	1	No. of		No. of
No.	Colon ma	atch C	olon: match	c	olon match	Colons	match	Color match	Color match	Colons	match	Color	match	Color	match	Color n	natch	Color	match	Colon	match	Color	match	Colo r	match	Color	match	Colon	match
1	TTT 2	161	AAA 237	4 T	AA 2344	AAA	3044	AAA 2374	UUU 2161	AAA	3044	UAA	2344	ATT	2344	AAA	2374	AAA	2161	AAA	3044	AAA	2374	AUU	2344	AAA	3044	AAA	2161
2	ATT 20	070 0	LIAA 187 DAA 159	2 8	AAA 2132	AAG	2072	GAA 1872	AUU 2070	AAG	1500	AAA	2132		2132	GAA	1872	TTT	2070	AAG	2072	GAA	1872	000	2132	AAG	2072	UAA	2070
4	TAT 19	358	4GA 142	2 1	TA 1769	AGA	1553	AGA 1422	UAU 1858	AGA	1553	1000	1769	AAA	1769	AGA	1422	ATA	1858	AGA	1553	AGA	1422	AAA	1769	AGA	1553	ALIA	1858
5	AAT 1	716	AAG 124	8 1	TAT 1742	GAA	1378	AAG 1248	AAU 1716	GAA	1378	UAU	1742	ATA	1742	AAG	1248	TTA	1716	GAA	1378	AAG	1248	AUA	1742	GAA	1378	UUA	1716
6	TAA 15	577 (CCA 122	6 A	AG 1427	AGG	1238	CCA 1226	UAA 1577	AGG	1238	AAG	1427	TTC	1427	CCA	1226	ATT	1577	AGG	1238	CCA	1226	UUC	1427	AGG	1238	AUU	1577
7	TTC 13	372 (GGA 113	1 T	AG 1385	CAA	1196	GGA 1131	UUC 1372	CAA	1196	UAG	1385	ATC	1385	GGA	1131	AAG	1372	CAA	1196	GGA	1131	AUC	1385	CAA	1196	AAG	1372
8	GAA 13	366 1	CGA 98 ACA 92		CTT 1374	ACC	928	CGA 986	GAA 1366	ACC	928	CUU	1374	GAA	1374	CGA	986	CTT	1366	ACC	928	CGA	986	GAA	1374	ACC	928		1366
10	ATC 12	363 A 236 J	AUA 93 AAC 92	2 1 /	4TT 1337 1GA 1223	GAG	889	ACA 932	AUC 1236	GAG	884	AGA	1223	TCT	1223	ACA	932	TAG	1236	GAG	842	ACA	932	UCU	1223	GAG	842	HAG	1236
11	TCT 1	180 1	CCC 88	3 1	ICT 1136	GGA	831	CCC 888	UCU 1180	GGA	831	UCU	1136	AGA	1136	CCC	888	AGA	1180	GGA	831	CCC	888	AGA	1136	GGA	831	AGA	1180
12	CTT 10	089 /	AGG 84	0 A	AC 1071	GGG	784	AGG 840	CUU 1089	GGG	784	AAC	1071	TTG	1071	AGG	840	GAA	1089	GGG	784	AGG	840	UUG	1071	GGG	784	GAA	1089
13	TAG 10	079 /	ACC 79	3 Т	AC 1055	AGC	776	GAG 806	UAG 1079	AGC	776	UAC	1055	ATG	1055	GAG	806	ATC	1079	AGC	776	GAG	806	AUG	1055	AGC	776	AUC	1079
14	GAT 10	069 1	GGG 74		CTA 1044	CCC	735	ACC 793	GAU 1069		735	CUA	1044	GAT	1044	ACC	793	CTA	1069	CCC	735	ACC	793	GAU	1044	CCC	735	CUA	1069
15		143 1	NGC 67 DAG 63		κωτ 1041 ΣΔΤ 1033	CGA	688	AGC 674	CAA 1060		688	ACU A AII	1041	TTA	1041	AGC	674	GTT	1060	CGA	688	AGC	674	ПΠΔ	1041	CGA	688	GUU	1060
17	AGA 10	029 0	CCG 62	5 6	AA 1008	GAC	652	CAG 632	AGA 1029	GAC	652	GAA	1008	CTT	1008	CAG	632	TCT	1029	GAC	652	CAG	632	CUU	1008	GAC	652	UCU	1029
18	TTG 10	013 (GCA 61	I A	GT 1004	CAG	620	CCG 625	UUG 1013	CAG	620	AGU	1004	TCA	1004	CCG	625	AAC	1013	CAG	620	CCG	625	UCA	1004	CAG	620	AAC	1013
19	AAG 9	84 1	GAC 58	7 1	FTC 994	ACG	602	GCA 611	AAG 984	ACG	602	UUC	994	AAG	994	GCA	611	TTC	984	ACG	602	GCA	611	AAG	994	ACG	602	UUC	984
20	TCA 9	57 0	CGG 56	9 0	GTT 966	CAC	593	GAC 587	UCA 957	CAC	593	GUU	966	CAA	966	GAC	587	AGT	957	CAC	593	GAC	587	CAA	966	CAC	593	AGU	957
21	166 9 TAC 9	48 0	DAC 54 ACG 50	3 1	GA 958 FGT 900	GGC	527	CGG 569	UGG 948	GGC	527 495	UGA	900	ACT	900	CGG	563	ACC	948	CGG	495	CAC	563	ACO	900	GGC	027	AUG	948
23	TCC 9	12 1	GGC 49	9 A	ATC 871	CCG	473	ACG 506	UCC 912	CCG	473	AUC	871	TAG	871	ACG	506	AGG	912	CCG	473	ACG	506	UAG	871	CCG	473	AGG	912
24	TGT 9	07 0	GCC 47	3 0	ATA 862	GCA	471	GGC 499	UGU 907	GCA	471	GUA	862	CAT	862	GGC	499	ACA	907	GCA	471	GGC	499	CAU	862	GCA	471	ACA	907
25	GTT 8	321 (CGC 34	2 A	\GG 828	GCC	462	GCC 473	GUU 821	GCC	462	AGG	828	TCC	828	GCC	473	CAA	821	GCC	462	GCC	473	UCC	828	GCC	462	CAA	821
26	CTA 8	812 0	GCG 31:	2 0	GT 826	CGC	317	CGC 342	CUA 812	CGC	317	GGU	826	CCA	826	CGC	342	GAT	812	CGC	317	CGC	342	CCA	826	CGC	317	GAU	812
27	AAC 7	65 1	3AG 81		AA 787	GCG	292	GCG 312	AAC 765	GCG	292	CAA	181	GII	187	aca	312	Ing	765	GCG	292	GCG	312	GUU	/8/	GCG	292	000	765
28 CC	A 740			ССТ	742			0	CA 740	1		CCU	742	GGA	742			GGT	740					GGA	742			GGU	740
29 GG	A 718			TGG	741			0	GA 718		U	JGG	741	ACC	741			CCT	718					ACC	741			CCU	718
30 AG 31 GT	T 702 A 666			GAT TCA	720				GU 702			JCA	720	AGT	720			CAT	702					AGU	720	i		CAU	702
32 CT	C 663			TTG	712				C 663		ì	UUG	712	AAC	712			GAG	663					AAC	712			GAG	663
33 CC	T 653			ACA	696			0	CU 653		1	ACA	696	TGT	696			GGA	653					UGU	696			GGA	653
34 AU 35 CC	A 652 C 641			GGA	691				CA 652			ACC BGA	691	CCT	691			GGG	652					CCU	691			GGG	652
36 AG	G 626			GCT	662			Ā	GG 626		i i i	GCU	662	CGA	662			TCC	626					CGA	662			UCC	626
37 TG	C 606			GGG	617			L	IGC 606		0	GGG	617	CCC	617			TGA	606					CCC	617			UGA	606
38 AU 39 TO	1 606 3 597				614				CO 606			JAG AGC	614	TCG	614			ACG	597					LCG	614			ACG	597
40 GA	G 581			CGA	603			i i i i i i i i i i i i i i i i i i i	AG 581		(CGA	603	GCT	603			CTC	581					GCU	603			CUC	581
41 CG	A 572			TCC	599			0	GA 572		l	JCC	599	AGG	599			GCT	572					AGG	599			GCU	572
42 AU 43 GG	U 547 T 545				545				CC 547				545	GGT	545 541			CCA	547					GGU	545			CCA	547
44 GG	G 538			CTC	526			G	GG 538		0	CUC	526	GAG	526			CCC	538					GAG	526			CCC	538
45 CA	G 495			TCG	501			C	AG 495		L	JCG	501	AGC	501			GTC	495					AGC	501			GUC	495
46 AG	C 490 G 489			GAC	480				VGC 490			GAC CGU	480 454	GCA	480			TCG	490					CUG	480	i		UCG	490
48 GC	T 441			TGC	443			6	ACU 441		ì	JGC	443	ACG	443			CGA	441					ACG	443			CGA	441
49 GC	A 440			GCA	427			0	iCA 440		0	GCA	427	CGT	427			CGT	440					CGU	427			CGU	440
50 GA	C 432			GTC	412			6	AC 432			GUC	412 1	CAG	412			CTG	432					LIGC	412	i		CUG	432
52 CG	G 399			ACG	409				GG 399])	ACG	409	CCG	409			GCC	399					CCG	409			GCC	399
53 AC	G 397			CTG	405			1	CG 397		0	CUG	405	GAC	405			TGC	397					GAC	405			UGC	397
54 CG	I 389 G 389				401				CG 389				401 I 393 I	GTG	401			GCA	389					GUG	401			GGC	389
56 GG	C 387			GCC	390				GC 387			GCC	390	CGG	390			CCG	387					CGG	390			CCG	387
57 GT	G 380			CGG	373			G	iUG 380	Ì	0	CGG	373	GCC	373			CAC	380					GCC	373			CAC	380
- 58 CA			+	I CCG	360			+	AC 364		+2	CCG	360 1	GGC	360			CGG	364	+-		+		GGC	360			GUG	- 364 -
60 CG	C 231			GCG	236				GC 231			GCG	236	CGC	236			GCG	231					CGC	236			GCG	231
61 GC	G 211			CGC	231			0	iCG 211	ĺ	(CGC	231	GCG	231			CGC	211					GCG	231			CGC	211

© 2018, IJCSE All Rights Reserved

96