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Abstract - In modern era of wireless communications Viterbi decoder (VD) is widely used to decode Binary Convolution 

Codes (BCC) in many Wi-Fi systems such as WLAN 802.11a/n/ac/ah, Satellite communications, Mobile communications 

etc. To obtain high decoding performance, the constraint length of BCCs is basically quite long. Whereas the complexity 

of VD is exponentially affected by BCCs constraint length. Therefore Viterbi decoding of BCCs with long constraint 

length cannot be used for systems or devices like Internet of Things (IoT) sensors, that require low power and less 

hardware cost. In this work a less-complex Kmin Viterbi Decoder (KVD) is proposed in which the decoder's complexity is 

inconsiderably affected by constraint length. For the decoding performance evaluation such as Packet Error Rate (PER) 

and Bit Error Rate (BER) of the proposed decoder, a BCC with constraint length k = 7 is used. This code is required in 

Wi-Fi systems such as IEEE 802.11a/n/ac/ah. A new standard 802.11ah for IoT applications is considered for simulation. 

The PER performance of proposed KVD decoder in relation with several factors such as channel type, modulation type, 

decoder's trace-back length and packet size has been evaluated. The proposed KVD achieves the same PER 

performance as the orthodox VD does, while its complexity is reduced by approximately 12.80 times to 21.33 times 

shown in result analysis.  

Keywords—kmin Viterbi Decoder (KVD); Binary Convolution Code (BCC); IoT sensors; Packet Error Rate (PER); Bit 

Error Rate (BER); Wireless Transceiver; 802.11 a/n/ac/ah WLAN  

 

I.  INTRODUCTION 

In today’s world, many researchers are getting attracted by 

internet of things (IoT) from all over the world. It is the key 

technology to build smart and intelligent systems, smart city, 

etc. [1]. The terms IoT refers to a network of things or objects 

that are equipped with electronic devices or sensors, to collect 

information of things and exchange the information with the 

server computer. To exchange data, IoT sensors [2] must have 

a wireless communication transceiver which follows one of 

the standards such as Bluetooth, Zigbee, Wi-Fi 802.11ah, etc. 

Among these standards, 802.11ah is being developed by IEEE 

802.11 committee. Because of inheriting many features from 

the successful Wi-Fi standards such as 802.11n/ac, the 

802.11ah is expected to be widely used for developing 

wireless transceiver in future IoT sensors. Unlike the orthodox 

Wi-Fi transceivers, i.e., 802.11n/ac [3], which need high data 

rate that is not a big issue in IoT transceiver. However, 

complexity becomes a critical problem because of less area, 

low-cost and low power consumed IoT sensors. Meanwhile, 

as the purpose of transferring data, packet error rate (PER) 

performance of transceiver is very important. Once the packet 

is received with error, the transceiver should transfer that 

packet again with higher signal power. As a result, transfer 

time is longer and system consumes more energy. Thus 

improving PER performance means reducing transfer energy. 

 

To improve the PER performance, beside of employing 

Orthogonal Frequency Division Multiplexing (OFDM) 

technology to eliminate the interference between data sub-

carriers, the implement of Error Correction Code (ECC) is 

necessary. Among many ECCs such as Binary Convolution 

Code (BCC), Turbo Code (TC), Low Density Parity Check 

(LDPC) Code etc., the BCC has been selected as a mandatory 

part in Wi-Fi systems such as 802.11a/n/ac/ah. 

 

To recover the transmitted data encoded by BCC, Viterbi 

decoder (VD) is required at the receiver side. Viterbi 

Decoding algorithm was developed by Andrew J. Viterbi in 

1967 [4]. It has been widely used in many systems such as W-

CDMA, Wi-Fi 802.11a/n/ac/ah, satellite communications, 

digital television, etc. in recent years. The low complex VD 

for decoding BCC with constraint length k=3 is commonly 

used for education purpose on high speed applications [5]. 

However, in real applications the complex VD for decoding 

BCC with long constraint length is utilized to improve the 

decoding performance such as PER. The modern Wi-Fi 

systems IEEE 802.11a/n/ac/ah employ BCC with constraint 
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length k = 7. The equivalent VD has 2
k- 1 

= 64 status nodes per 

layer. It is thus called as 64-state VD. Basically, the 

complexity of Viterbi decoder is (2
k-1

). 64-state VD is one of 

the most complex block [6] at the receiver side of Physical 

layer of Wi-Fi system.  

In this paper, a low-complexity Kmin Viterbi decoding (KVD) 

architecture is proposed. The orthodox and the proposed VDs 

are implemented into IEEE 802.11ah simulator and the PER 

performance of system is simulated when using the two 

decoders. After thorough result and mathematical analysis, it 

is concluded that the complexity of the proposed KVD is 

smaller than that of the orthodox VD by about 12.80 times to 

21.33 times while KVD achieves the same PER performance 

as an orthodox VD does. Although this research aims to 

support IoT sensors based on 802.11ah standard, the research 

results are also expected to be applicable in other Wi-Fi 

systems such as 802.11a/n/ac, or W-CDMA, satellite 

communications, etc., that use VD for decoding BCCs with 

high constraint length. The rest of this paper is organized as 

follows: Sect. 2 briefly describes binary convolution coding 

(BCC) and orthodox Viterbi decoder. Sect. 3 explains 

proposed KVD decoding architecture. Sect. 4 evaluates the 

complexity of KVD decoder in terms of number of 

mathematical operations and computational time. Sect. 5 

describes 802.11ah simulator and exposes PER/BER 

simulation results. Conclusion is discussed in the final section 

6. In future, the work can be extended for speed optimization 

of modified VD to be dumped in FPGA hardware [7]. 

 

II. BCC CODED ORTHODOX VITERBI DECODING 

A. Introduction 

Fig. 1 illustrates the operation of BCC encoder and Viterbi 

decoder in Wi-Fi 802.11a/n/ac/ah systems. At the transmitter 

side BCC encoder encodes the information bit-stream I into 

two encoded bit-streams A and B. At the receiver side Viterbi 

decoder generates the bit-stream I′ from A′ and B′, which 

are the estimated values of the encoded bit-streams A and B, 

respectively [8]. Because of interference, noise and fading 

effect of wireless environment, the estimated bit-streams A′ 

and B′ are hardly to be identical to A and B. The purpose of 

Viterbi decoder is to recover the transmitted bit-stream I from 

the wrongly-estimated A′ and B′.  

It means that I′ should be the same as I. In case I′ does not 

identical to I, the VD is considered to decode the data 

unsuccessfully. The transfer packet of data is received 

wrongly and the transmitter is requested to send the data 

again. 

 

 
Fig.1 BCC encoder at transmitter side of 802.11a/n/ac/ah systems. constraint 

length k = 7, number of internal registers m = k − 1 = 6 

 

B. Binary Convolution Coding (BCC) 

The 802.11a/n/ac/ah systems [9] use BCC encoder with 

constraint length k = 7. The inside of BCC encoder is shown 

in Fig. 1. The encoder uses m = k - 1 = 6 registers, i.e., R0 to 

R5, and two XOR gates to generate two output bits A and B 

from every input bit I. The code rate is thus r = 1/2. To 

increase the transfer rate, the higher code rates such as 2/3, 

3/4, 5/6, etc., may be selected by puncturing the encoded bit-

streams A and B with an appropriate ratio. To implement XOR 

gates that generate A and B, the industry standard generator 

polynomials g0 = 1338 and g1 = 1718 are used, respectively. 

The hardware design of BCC encoder is simple and does not 

need much resource [10]. 

 

C. Operation of orthodox Viterbi Decoder (VD) 

 

• Concept of Trellis Diagram 

The trellis diagram of VD in 802.11a/n/ac/ah is shown in Fig. 

2. It mimics the operation of BCC encoder. In which each 

layer of the trellis has 64 nodes showing 2
6
 = 64 status values, 

i.e., from 0 to 63, of m = 6 registers of BCC encoder. Because 

six registers of BCC encoder are initialized by zero value, the 

node with status value 0 in initial layer of VD’s trellis, i.e., 

denoted as node
(0)

 = 0, is selected to start the decoding 

process. If the first input bit of BCC encoder I
(1)

 equals to 

zero, or one, the next value of six registers R5R4R3R2R1R0 of 

BCC encoder will be 6′b000000 = 0 or 6′b000001 = 1 

respectively. Therefore, there are two paths connecting node
(0)

 

= 0 to node
(1)

 = 0 and node
(0)

 = 0 to node
(1)

 = 1. Note that 

node
(1)

 = x refers to status node x in layer l. In layer 2, in case 

the previous status node node
(1)

 = 0, the current status nodes 

should be node
(2)

 = 0 and node
(2)

 = 1 if the second input-bit of 

BCC encoder I
(2)

 = 0 and I
(2)

 = 1, respectively. Therefore, 

there are two paths connecting node
(1)

 = 0 to node
(2)

 = 0 and 

node
(1)

 = 0 to node
(2)

 = 1. In case node
(2)

 = 1, the current status 

nodes should be node
(2)

 = 2 and node
(2)

 = 3 if I
(2)

 = 0 and I
(2)

 = 

1, respectively. Thus, there are two paths connecting node
(1)

 = 

1 to node
(2)

 = 2 and node
(1)

 = 1 to node
(2)

 = 3. In total, there are 
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4 connection paths in layer 2. Similarly, there are 8, 16, 32, 

and 64 paths in layers 3, 4, 5, and 6. For layer l (l ≥ 7), there 

are 64 × 2 = 128 paths connecting 64 nodes in layer l - 1 to 

64 nodes in layer l, refer to Fig. 2. 

 
Fig.2 Trellis Diagram of orthodox VD in 802.11a/n/ac/ah systems with each 

layer 2m
 = 64 status nodes 

 

In addition, a path that connects node
(l-1)

 to node
(l)

 is 

accompanied with a pair of value I
(l)

/A
(l)

B
(l)

, in which I
(l)

, A
(l)

 

and B
(l)

 are respectively the l
th
 input-bit I, l

th
 encoded-bit A 

and B of BCC encoder. While I
(l)

 has two values zero and one, 

A
(l)

 and B
(l)

 can be calculated by eq. (1) and (2), respectively. 

For examples, two paths that connect node
(0)

 = 0 to node
(1)

 = 0 

and node
(0)

 = 0 to node
(1)

 = 1 are respectively accompanied 

with values 0/00 and 1/11, see Fig. 2. 

A
(l)

 = modulo(I
(l)

 + R1 + R2 + R4 + R5, 2) …………….(1) 

B
(l)

= modulo(I
(l)

 + R0 + R1 + R2 + R5, 2) ……………..(2) 

 

• Decoding Process 

The input data of Viterbi decoder are the estimated bit-streams 

A′ and B′ of A and B. The decoding process follows two 

stages, i.e., forward calculation and trace-back, one after the 

other. The pseudo code of the decoding process is shown in 

Fig. 3a. 

 

 
Fig.3 Pseudo codes of orthodox VD and KVD 

 

Stage 1: Forward Calculation 

This stage processes through a predefined L layers of the 

trellis. In which L is an important parameter of VD called as 

trace-back length. In each layer, a number of num_node loops 

will be repeated. Each loop performs two tasks such as 

calculate_path_metric( ) & calculate_accumulated_metric( ). 

Note that num node presents the number of nodes should be 

calculated in each layer. For layer 1, 2, 3, 4, 5 and 6 values of 

num_node will be 1, 2, 4, 8, 16 and 32 respectively. For other 

layers, we have num_node = 64. 

 

Task calculate_ path_ metric( ) in layer l (l ≥ 1) calculates 

path metric of all the paths connecting nodes in layer l – 1 to 

nodes in layer l. In case of hard-decision VD, path metric is 

measured as Hamming distance between the expected value 

A
(l)

, B
(l)

 and the estimated values A’
(l)

, B’
(l)

. The calculation is 

shown in eq. (3). In which A
(l)

, B
(l)

, A’
(l)

 and B’
(l)

 are all binary 

data. In case of soft-decision VD, path metric is measured as 

Euclidean distance between A’
(l)

, B’
(l)

 and A’
(l)

, B’
(l)

. The 

calculation is shown in eq. (4). In this case, A
(l)

, B
(l)

, A’
(l)

 and 

B’
(l)

 are the log likelihood ratio (LLR) values and are 

represented by a number of binary bits, i.e., denoted as D bits. 

p(hard) =| A’
(l)

 − A
(l)

 | + | B’
(l)

 − B
(l)

 | ………………(3) 

p(sof t) = (A’
(l)

 −A
(l)

)2 + (B’
(l)

 −B
(l)

)
2
  ….…………..(4) 

 

Task calculate_ path_ metric( ) in layer l (l ≥ 1) calculates 

accumulated metric of all nodes in layer l. For layer l with l < 

7, node j in layer l is connected with only one node, e.g., node 

i, in layer l - 1. The calculation follows eq. (5). For layer l with 

l ≥ 7, node j in layer l is connected with two nodes, e.g., nodes 

i
1
 and i

2
, in layer l - 1. The calculation follows eq. (6) - (8). In 

which mi(l− 1) and mj(l) denote accumulated metric of node i 

in layer l - 1 and of node j in layer (l) (0 ≤  i, j ≤  63) 

respectively; pi, j denotes path metric of the path that connects 

node i and node j and min(a, b) function returns to the smaller 

value of a and b. 
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mj
(l)

 = mi
(l− 1)

 + pi, j  ………………………………….(5) 

m1j
(l)

 = mi1
(l−1)

 + pi1, j ……………………………… (6) 

m2j
(l)

 = mi2
(l−1)

 + pi2, j  ………………………………(7) 

mj
(l) = min (m1j

(l)
 , m2j

(l)) ……………...(8) 

 

It means that accumulated metric of a node in one layer is 

defined as the sum of accumulated metric of its connected 

node in previous layer with its path metric. For layer l with l 

≥ 7, each status node has two connected paths with previous 

layer’s status nodes. The path that results to smaller 

accumulated metric is considered to be survival path. And 

that smaller accumulated metric will be selected. 

 

Fig. 4 illustrates the calculation of accumulated metric for 

node(l) = 0 and node(l) = 1, with l ≥ 7. The forward calculation 

is repeated from layer to layer until layer l = L is completed. 

At layer L, node that has the smallest accumulated metric will 

be selected as a start point for the next stage, i.e., trace-back. 

Remember that L is known as trace-back length. 

 

 
Fig.4 Accumulated Metric Calculation Process 

 

Stage 2: Trace-back 

Trace-back is a process in which the decoded data I ′  is 

computed bit-by-bit in the order I′L , . . . , I ′(2)
, I′(1)

 . In each 

layer, there are two tasks such as find_snode( ) and 

decode_data( ) are performed, refer to Fig. 3a. 

Task find_snode( ) in layer l (l ≥ 1) finds the most suitable 

node snode
(l)

 among 64 nodes in that layer. For layer l = L, 

snode
(l)

 is obtained by comparing accumulated metric of all 

64 nodes in layer L. It should be the node that has the 

smallest accumulated metric. For the other layers, i.e., layer l 

with l < L, the most suitable node snode
(l)

  is the one that has 

smaller accumulated metric between the two nodes having 

connection with snode
(l+1)

 To know which nodes having 

connection with snode
(l+1)

, the VD needs to memorize the 

survival paths of all 64 nodes in all L layers of the trellis. 

Task decode_data( ) in layer l (l ≥ 1) estimates I′(l) of the 

transmitted data I
(l)

 from snode
(l)

. To do that the VD needs to 

memorize the trellis architecture. It means that the 

accompanied data I
(l)

 of all survival paths of the trellis must 

be stored in memory. The decoded data I ′ (l)
 will be the 

accompanied data I
(l)

 of the path that connects snode
(l-1)

to 

snode
(l)

. 

 

III. PROPOSED KMIN VITERBI DECODING (KVD) 

Similar to the orthodox VD, the proposed KVD also 

processes through L layers in which L is known as trace-back 

length. The process includes two stages such as forward 

calculation and trace-back. Unlike the orthodox VD which 

relies on architecture of trellis diagram, processing of KVD 

follows mathematical equations. Therefore, the KVD does 

not need to memorize trellis diagram. In addition, the KVD 

calculates path metrics and accumulated metrics of only K 

nodes (not all 64 nodes) per layer. In which K is a parameter 

of KVD (K ≤ 64). The pseudo code of KVD is shown in Fig. 

3b. 

 

Stage 1: Forward Calculation 

This stage processes through L layers. In each layer, a 

number of Kmin_node loops will be repeated. Each loop 

performs four tasks such as specify_status_node( ), 

calculate_path_metric( ), calculate_accumulated_metric( ) 

and sort_Knode( ). Let define K as a known parameter of 

KVD, Kmin_node takes the minimum value of num_node and 

K. Remember that, for layer 1, 2, 3, 4, 5 and 6 values of 

num_node will be 1, 2, 4, 8, 16 and 32 respectively. For other 

layers, we have num_node = 64. For example, if K = 3 then 

Kmin_node = 1 and Kmin_node = 2 in layer 1 and 2 respectively 

and Kmin_node = 3 for layer l (l > 2). Task 

specify_status_node( ) in layer l (l ≥ 1) specifies child nodes 

cnode
(l)

 of layer l that have connection with each of the Kmin 

_node parent nodes pnode
(l− 1)

 in layer l - 1.  

In this paper, we consider pnode
(l− 1)

and cnode
(l)

 as parent 

node and child node in layer l respectively. Note that pnode
(l− 

1)
 and cnode

(l)
 respectively present status values of six 

registers of BCC encoder in the (l - 1)
th

 and the l
th

 cycles. 

Because after each cycle value of six registers is shifted to the 

most significant bit (MSB) by one bit, the value should be 

double then be modulo by 2
6
 = 64. In addition, the least 

significant bit R0 of the six register is assigned to the l
th

 input 

bit I
(l)

, the new value of six registers should be added to I
(l)

 

after being doubled. Therefore, we can specify cnode
(l)

 from 

pnode
(l− 1)

as eq. (9) in which I
(l)

 has two values zero and one. 

cnode
(l)

 = modulo(2 ×pnode
(l− 1)

, 64) + I
(l)

  ……………… (9) 

 

For example, from parent node pnode
(l− 1)

 = 5 there are two 

child nodes cnode
(l)

 = 10 and cnode
(l)

 = 11; and from  pnode
(l− 

1)
 = 33 there are two child nodes cnode

(l)
 = 2 and cnode

(l)
 = 3 

refer to Fig. 5a. If layer l - 1 has K parent nodes pnode
(l− 1)

 a 

maximum of 2K child nodes cnode
(l)

 will be generated. In 
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case any two parent nodes have the same connection with any 

two child nodes, the total number of child nodes will be 

smaller than 2K. Because of the modulo function in eq. (9) 

we know that two parent nodes        pnode
(l− 1)

 = x (x = 0, 1, . . 

. , 31) and pnode
(l− 1)

 = 32 + x will have the same child nodes. 

An example in Fig. 5a shows that there are 6 but not 8 child 

nodes are generated from K = 4 parent nodes. That is because 

two parent nodes            pnode
(l− 1)

 = 1 and pnode
(l− 1)

 = 31 

have the same child nodes cnode
(l)

 = 2 and cnode
(l)

  = 3. Task 

calculate_path_metric( ) calculate the path metrics. From K 

parent nodes there are 2K path metrics will be calculated. The 

calculation follows eq. (3) or (4) as the orthodox VD does. 

 

Task Kmin_calculate_accum_metric( ) in layer l (l ≥  1) 

calculates accumulated metrics of the child nodes specified in 

specify_status_ node( ) task. From Fig. 5a we see that a child 

node cnode
(l)

 may have one or two connection paths. The path 

may come from pnode
(l− 1)

 = x (x = 0, 1, . . . , 31), i.e., known 

as s
(l)

 = 1 or come from pnode
(l− 1)

 = 32 + x, i.e., known as s
(l)

 

= 2. For simplicity we assume that there are 2K different 

child nodes generated from K parent nodes and each child 

node have only one connection path. The path may be s
(l)

 = 1 

or s
(l)

 = 2.  

For example, Fig. 5b shows that child node cnode
(l)

 = 2 

generated from pnode
(l− 1)

 = 1 and from pnode
(l− 1)

 = 31 is 

considered to be two different child nodes with the same 

status value cnode
(l)

 = 2 but different paths, i.e., s
(l)

 = 1 and s
(l) 

= 2 respectively. 

 

For child node that has s
(l)

 = 1, the accumulated metric m1
(l) 

is 

calculated as eq. (6) while, m2
(l) 

is assigned to a very large 

constant MAX that is expected to be always larger than m1
(l)

. 

Similarly, for child node that has s
(l)

 = 2, m2
(l)

 is calculated as 

eq. (7) while m1
(l)

 is assigned to MAX. The final accumulated 

metric of child node cnode
(l)

 is the minimum value of m1
(l)

 

and m2
(l)

 as eq. (8), refer to Fig. 5b. 

 

Task sort_Knode( ) in layer l (l ≥ 1) will find the top child 

nodes that have smallest accumulated metrics. It then finds 

whether there are any two child nodes having the same status 

value cnode
(l)

 but different accumulated metric m
(l)

 or not. If 

there are, the one with larger accumulated metric will be 

removed from the list. Finally, only K nodes pnode
(l)

 will be 

selected to become the parent nodes for next layer, refer to 

Fig. 5c and 5d. 

 

 
Figure 5 An example of one loop operation in layer l of KVD of K = 4 

 

Stages 2: Trace-back 

Similar to the orthodox VD, trace-back stage of KVD 

computes the decoded data I′ bit-by-bit in the order I′ (L)
 , . . . 

, I ′  (2)
, I ′  (1)

. Each layer performs two tasks such as 

Kmin_find_snode( ) and Kmin_decode_data( ), refer to Fig. 3b. 

Task Kmin_find_snode( ) in layer l (l ≥ 1) finds the most 

suitable node snode
(l)

 among K parent nodes in that layer. For 

layer l = L, snode
(l)

 is obtained by comparing accumulated 

metric of 2K child nodes cnode
(l)

. It should be the node that 

has the smallest accumulated metric. 

 

In addition, from eq. (9) we deduce to eq. (10) and (11) to 

specify two nodes snode1
(l - 1)

 and snode2
(l - 1)

 in layer l -1 that 

have connection with snode
(l)

 in layer l. In which floor(x) 

function returns to the largest integer value that is smaller 

than or equal to x. If we call s
(l)

 as the survival path of 

snode
(l)

then s
(l)

 is equal to either 1 or 2. If s
(l)

 = 1 the 

connection between snode
(l)

 and snode1
(l - 1)

 results to smaller 

accumulated metric. Otherwise, the connection between 

snode
(l)

 and snode2
(l -1)

 results to smaller accumulated metric. 

Therefore, we propose eq. (12) to trace back the selected 

node snode
(l-1)

 from snode
(l)

. By using eq. (12) KVD needs to 

memorize only K status nodes pnode
(l)

 and their survivor 

paths s(l) per layer. 

snode1
(l - 1)

 = floor(snode
(l)

 /2) ………………………(10) 

snode2
(l - 1)

 = floor(snode
(l)

 /2) + 32 …………………(11) 

snode
(l-1)

 = floor(snode
(l)

 /2)+ 32 × (s(l)
 − 1) ………(12) 

For example, if snode
(l)

 = 1 and s
(l)

 = 2, then we know that 

snode
(l-1)

 = 32. 

Task decode_data( ) in layer l (l ≥ 1) estimates I
(l)

 of the 

transmitted data I
(l)

. Instead of memorizing the accompanied 

data I
(l)

 of all paths as the orthodox VD does, we propose a 
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mathematics equation to derive I′ (l)
 from snode

(l)
. From eq. 

(9) we see that if I
(l)

 = 0, value of node
(l)

 will be even. 

Otherwise, value of node
(l)

 will be odd. Based on the 

even/odd property of snode
(l)

, we can know whether I′ (l)
 = 0 

or I′ (l)
 = 1. In short, we propose eq. (13) to decode I′ (l)

 from 

snode
(l)

. 

I′ (l)
 = modulo(snode

(l)
, 2) …………………………(13) 

 

Fig. 6 shows a simple example of KVD with K = 3 and trace-

back length L = 8. In most of layers 2K = 6 child nodes are 

generated and only K = 3 nodes will be selected to become 

parent nodes of next layer. In layer 7, only 4 child nodes are 

generated because the parent nodes 8 and 40 have the same 

child nodes 16 and 17. In the trace-back stage, we assume 

that path from node 40 to 16 is the survival path. Therefore, 

node 40 (but not node 8) will be selected. 

Finally, the trace-back line goes through nodes 33, 16, 40, 20, 

10, 5, 2, 1 and 0 see Fig. 6. Therefore, the decoded data will 

be I
(8)

 → I(1)
 = 1, 0, 0, 0, 0, 1, 0, 1. 

 
Fig.6 A simple example of KVD. K = 3 and trace-back length L = 8 

 

IV. COMPLEXITY ANALYSIS OF BOTH DECODING 

ARCHITECTURE 

In this section the complexity of orthodox VD and KVD in 

terms of number of mathematical operations and processing 

time is thoroughly analyzed. 

 

4.1 Mathematical operations in VD and KVD 

 

We denote Nsub/add, Nabs and Nsqr respectively as the total 

number of subtract/adder, absolute and square operations will 

be used by Viterbi decoder. To calculate a path metric, eq.(3) 

and (4) show that a hard decision VD requires 3 

subtract/adder and 2 absolute operations while a soft decision 

VD requires 3 subtract/adder and 2 square operations. To 

calculate accumulated metric for a node, eq. (6), (7) and (8) 

show that 2 subtract/adder operations are needed. Because the 

trace-back length L of VD is commonly much larger than 6, 

the following conclusions are approximately true. 

• For the orthodox VD, there are 64 × 2 = 128 path metrics 

and 2
(k-1)

 = 64 (k = 7) accumulated metrics will be calculated 

per layer. Therefore, we have Nsub/add = (3 ×128 + 2 × 64) × 

L = 512 × L = 8 ×2
(k-1)× L. In addition, there are Nabs = 2 × 

128 × L = 256 × L = 4 ×2
(k-1)× L and Nsqr = 4 ×2

(k-1)× L 

operations are respectively required in case of hard decision 

and soft decision. 

• For the KVD, we have Nsub/add = (6K+2K)×L = 8 × K × L 

and Nabs = 4 × K × L and Nsqr = 4 × K × L are required in 

case of hard decision and soft decision respectively. We see 

that the numbers of subtract/adder, absolute and square 

operations of KVD does not affected by BCC’s constraint 

length k or the number of status nodes of decoder, while the 

orthodox VD does. Table 1 shows the number of arithmetic 

operations of orthodox VD and KVD in case trace-back 

length L = 60. At the outset, it can surely be concluded that 

the number of arithmetic operations is lower by 64/K times if 

using KVD instead of orthodox VD. 

 

 

 

 

 

4.2 Total computational time analysis report 

The proposed system that includes BCC encoder (k = 7) and 

Viterbi decoding is done in MATLAB. The VD is whether 

orthodox VD or KVD with several values of K such as K = 1, 

3, 5, 10 and 32. The number of transfer bits per packet is 

4000 and the number of packets is 5000, the trace-back 

length L = 60. Each packet is divided into (4000/60) = 67 

blocks. The processing time of system in case of using 

orthodox VD and KVD with K = 1, 3, 5, 10 and 32 is shown 

in Table 2. In case of soft-decision, D = 3 bits is selected. 
Table 1 Number of Arithmetic Operations with L = 60 

 

VD Type Nsub/add Nabs (Hard) Nsqr (Soft) 

Orthodox VD 30720 15369 15369 

KVD, K= 32 15360 7680 7680 

KVD, K= 10 4800 2400 2400 

KVD, K= 5 2400 1200 1200 

KVD, K= 3 1440 720 720 

KVD, K= 1 480 240 240 
 

 

Table 2 Processing time of system when using orthodox VD and KVD with     L 

= 60 and D = 3 

 

VD Type Hard Decision Soft Decision 

Time Unit Time Unit 

Orthodox VD 1 Hr. 9m 

45s 

58.1 1 Hr. 

15m 30s 

58.5 

KVD, K= 32 29m 45s 24.8 32m 53s 25.6 

KVD, K= 10 8m 41s 7.2 9m 11s 7.2 

KVD, K= 5 4m 26s 3.7 4m 58s 3.9 
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KVD, K= 3 2m 50s 2.4 3m 12s 2.5 

KVD, K= 1 1m 12s 1 1m 17s 1 

 

In table 2, the Time column shows the processing time in 

term of hour(h)/minute(m)/second(s). The time h/m/s is then 

converted into the number of seconds and divides to the 

processing time of KVD with K = 1. The result is shown in 

Unit column. From Table 2 we see that the processing time in 

both cases, i.e., hard-decision and soft-decision, is almost 

linear proportional to K value. It means that we can reduce 

the computational resource by approximately 64/K times if 

using KVD instead of orthodox VD. The processing of soft-

decision VD is a little bit longer than that of hard-decision 

VD. That is because the calculation of square operation takes 

more clock cycles than the calculation of absolute operation. 

V. PER/BER SIMULATION RESULTS 

 

To simulate performance of the orthodox VD and the 

proposed KVD, a draft version of 802.11ah simulator is used. 

Block diagram of the simulator is shown in Fig. 7. At the 

transmitter side, ‘PSDU GEN’ block generates a stream of 

random data for transmitting. ‘SIG GEN’ block generates the 

data for signal field of the transfer packet. ‘Scrambler’ block 

performs the scrambling to avoid sequence of zeros or ones. 

‘BCC Encoder’ block encodes information bits. ‘OFDM SYM 

SPLIT’ block splits the stream of data into a number of 

orthogonal frequency division multiplexing (OFDM) symbols. 

‘Interleave’ block changes the bit-order in each OFDM 

symbols. Its purpose is to deal with burst error that may 

appear during the transmission. ‘Mapper’ block maps the data 

into constellation. The 802.11a/n/ac/ah support several types 

of modulation such as binary phase shift keying (BPSK), 

quadrature phase shift keying (QPSK), 16 quadrature 

amplitude modulation (16-QAM), 64-QAM and 256-QAM. 

‘Pilot’ block generates the pilot values. ‘Preamble Memory’ 

stores preamble data of the transfer packet. This data is used 

by receiver to estimate channel condition. ‘Subcarrier 

Allocate’ block allocates output of ‘Mapper’ to data 

subcarriers, and output of ‘Pilot’ to pilot subcarriers of OFDM 

symbols. Each OFDM symbol has 64 subcarriers which 

include 48 data subcarriers, 4 pilot subcarriers and 8 null 

subcarriers. ‘IFFT’ blocks perform the invert fast Fourier 

transforms so that subcarriers within symbol become 

orthogonal. It also converts data from frequency-domain to 

time-domain. ‘GII’ block inserts guard interval (GI) to protect 

data of a symbol from interference with data of adjacent 

symbols. In this simulator we apply normal guard interval. 

‘OFDM SYM CONCAT’ block concatenates the OFDM 

symbols into a continuous stream. This stream of data is sent 

to the receiver via a wireless channel which can be additive 

white Gaussian noise (AWGN) channel or Rayleigh fading 

channel. 

 

 
Fig.7 Block Diagram of 802.11ah PHY simulator 

 

The blocks at receiver side do the opposite tasks as those of 

transmitter side do. In detail, ‘OFDM SYM SPLIT’ splits 

stream of data into several OFDM symbols. ‘GIR’ removes 

the GI subcarriers from OFDM symbols. ‘FFT’ performs fast 

Fourier transfer to convert data from time domain to 

frequency domain. ‘Pilot Data Extract’ extracts data and pilot 

subcarriers for further processing. The pilot subcarriers are 

used for phase tracking which is not implemented in this 

simulator. In the channel training phase, the data subcarriers 

are used by ‘Channel Est.’ block to estimate the channel 

condition. In the data phase, the data subcarriers are passed to 

‘Demapper’. In case of hard decision, ‘Demapper’ estimates 

the input values of ‘Mapper’. In case of soft decision, 

‘Demapper’ calculates the LLR values of input data of 

‘Mapper’. ‘De-Interleave’ does the opposite task of 

‘Interleave’. In which it returns the data subcarriers into the 

original position. ‘OFDM SYM CONCAT’ concatenates the 

data from OFDM symbols into one stream before giving to 

‘Viterbi Dec.’ The ‘Viterbi Dec.’ decodes the received data to 

obtain the transmitted information. ‘De-Scrambler’ does the 

opposite task of ‘Scrambler’. ‘Scrambler’ and ‘Descrambler’ 

are used to avoid long sequence of zeros or ones. Thus, they 

can partly solve the high peak to average power ratio (PAPR) 

problem of a communication system. The output of 

‘Descrambler’ at receiver side is compared with the input of 

‘Scrambler’ at transmitter side to check whether the receiver 

can recover the transmitted data correctly or not. In this work, 

the BER and PER performance of Kmin Viterbi decoder is 

evaluated with several values of K such as 1, 3, 5, 10, 32 and 

64. Note that, K = 64 of KVD have the same performance as 

orthodox Viterbi decoder. The simulation parameters are 

shown in Table 3. 

 
Table 3 Simulation parameters 

  
Parameters Values 

Simulator 
IEEE 802.11ah draft 
version 

Number of iterations 5000 

Number of special streams in Tx x Rx 1 x 1 
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Channel type AWGN, Rayleigh fading 

Channel estimation Ideal 

Modulation types BPSK, 16 – 256 QAM 

Code rate ½, ¾ 

Transfer data type Random 

Viterbi Decoders data bit width 3-bit soft-decision 

5.1 KVD versus Channel Type 

In this subsection, performance of KVD in AWGN and 

Rayleigh fading channels is evaluated. In case of fading 

channel, the number of channel taps is set to 5. The PER 

performance is shown in Fig. 8a. In addition, the BER 

performance is also provided in Fig. 8b for reference. From 

Fig. 8a we can see that the PER performance of KVD in 

AWGN channel is better than that of in Fading channel. In 

case of AWGN channel, KVD with K = 3 achieves the same 

PER as the orthodox VD, i.e., KVD with K = 64, does. In 

case of fading channel, KVD with K = 5 achieves the same 

PER as the orthodox VD does. However, the PER 

performance of KVD with K = 1 is very worse in both 

channels. Amounts of PER performance degradation         (K 

= 1) are 3dB and 8dB in cases of AWGN and Fading 

channels respectively. Therefore, the KVD with 3 ≤ K ≤ 5 is 

recommended for real hardware implementation to reduce the 

complexity of decoder by approximately 64/5 = 12.80 times 

to 64/3 = 21.33 times. 

  
For applications in which BER performance is more 

important than PER performance, the BER results in Fig. 8b 
are shown for reference. This figure shows that the BER 

performance of KVD is eventually degraded if K value 

reduces. However, the degradation of BER performance of 
KVD is less significant in case of AWGN channel. Because 

of the degradation of BER performance, the using of KVD is 
a trade-off between complexity and BER performance. 

 

 
 

 
Fig. 8 PER & BER performance: KVD versus channel types. 64QAM, L = 

60, PS = 100 bytes/packet. 

5.2 KVD versus trace-back length L 

In this subsection, performance of KVD in relation with 

several values of decoder’s trace-back length L is evaluated. 

Basically, selecting L value is a trade-off between PER/BER 

performance and hardware cost. There is a fact that 

increasing the value of trace-back length L will result to 

better PER/BER performance but require more hardware cost 

and power consumption. Fig. 9 shows the PER performance 

of 802.11ah system when using KVD with several values of 

trace-back length L such as L = 20, L = 60, L = 100, and L = 

800. These results prove for the fact that increasing L value 

will result to better PER performance. For example, to 

achieve the same PER performance (PER = 0.1), the 

orthodox VD (with K = 64) can reduce the signal-to-noise 

ratio (SNR) from SNR = 36 dB to SNR = 33.5 dB to SNR = 

31.5 dB and to SNR = 27 dB by increasing the trace-back 

length from L = 20 to L = 60 to L = 100 and to L = 800 

respectively. However, the Viterbi decoder with smaller 

value of L is preferred for applications which require low-

cost and low-power such as IoT sensors Wireless LANs [11], 

[12]. Fig. 9 also shows that when using Viterbi decoder with 

smaller trace-back length L, the proposed KVD decoding one 

is more robust in terms of reducing complexity [13]. 
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Fig. 9 PER performance: KVD versus decoder’s trace-back length. 64QAM, 

PS = 100 bytes/packet. 

For examples, in cases L = 20, L = 60, L = 100 and L = 800, 
the proposed KVD with K = 3, K = 5, K = 5 and K = 10 
respectively achieve the same PER performance as the 
orthodox VD does. It means that the complexity can be 

reduced by 21.33, 12.80, 12.80 and 6.4 times respectively. 
For all the cases, PER performance of KVD with K = 1 is 
very worse. The PER performance degradation is above 5dB 

in all cases. Therefore the KVD with 20 ≤ L ≤ 60 and 3 ≤ K 

≤ 5 is recommended for developing IoT sensors. In addition, 

within an amount of acceptable hardware cost, using the 
proposed KVD decoding one with larger trace-back length L 

will provide better PER performance as compared to the 
orthodox one with smaller L does.  
For examples, Fig. 10 shows that PER performance of the 
KVD with K = 5, L = 800 is better than that of the orthodox 
one with K = 64, L = 100; and PER performance of the KVD 
with K = 5, L = 60 is better than that of the orthodox VD with 
K = 64, L = 20. 

 

 
Fig. 10 PER performance: VD with K = 5 and K = 64 versus trace-back 

length L = 20, 60, 100, 800. 64-QAM, PS = 100 bytes/packet 
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Fig. 11 BER performance: KVD versus decoder’s trace-back length. 

64QAM, PS = 100bytes/packet. 

For reference purpose, the BER performance of KVD is 
shown in relation with L in Fig. 11. This figure shows that in 
case of small L, e.g., L = 20, the degradation of BER 
performance when K = 5 as compared to K = 64 is 

insignificant. However, for large L such as L ≥ 60 the BER 

performance is eventually degraded and amount of 
degradation is significant. In these cases, the proposed KVD 
decoding one may be used in consideration the trade-off 
between BER performance and complexity. 

 
5.3 KVD versus modulation type 

 

In this subsection, we evaluate the PER performance of KVD 

in relation with several modulation types such as BPSK, 

16QAM, 64QAM and 256QAM. Our simulation results are 

shown in Fig. 12. The PER performance of Kmin one with K = 

1 is very worse in all cases. As compared to case K = 64, the 

PER performance degradation is about 10dB, 8dB, 8dB and 

7dB if modulation type is BPSK, 16QAM, 64QAM and 

256QAM respectively (at PER = 0.1). If K = 3 the PER 

performance is significantly improved. As compared to case 

K = 64, the PER performance degradation is only about 

0.2dB, 1dB, 1.8dB and 1.3dB in cases of BPSK, 16QAM, 

64QAM and 256QAM respectively. In all modulation types, 

the Kmin one with K = 5 achieves the same PER performance 

as the orthodox one (with K = 64) does. Selecting K value in 

the range 3 ≤ K ≤ 5 is again recommended to reduce the 

complexity of decoder by 64/5 = 12.80 times to 64/3 = 21.33 

times. 
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Fig. 12 PER performance: KVD versus modulation types. Fading channel 

with 5 taps, L = 60, PS = 100 bytes/packet. 
 

5.4 KVD versus packet size (PS) 

In this subsection the PER performance of KVD in relation 

with several packet sizes PS is evaluated such as PS = 20, PS 

= 100 and PS = 500 bytes/packet. The simulation results are 

shown in Fig. 13. From the results in Fig.13a, b and c, we can 

see that PER performance of KVD with K = 1 is very worse 

in all cases. The PER degradation is above 5dB (at PER = 

0.1). When K = 3 the PER performance is much more 

improved. As compared to the orthodox decoder with K = 64, 

the PER degradation is about 1.7dB, 1.5dB and 0.3dB (at 

PER = 0.1) in cases PS = 20, PS = 100 and PS = 500 

bytes/packet, respectively. In all PS cases, the KVD with K = 

5 achieves the same PER performance as the orthodox VD 

(K=64) does. In addition, Fig. 13d shows that the PER 

performance is degraded if packet size PS increases. This is a 

reasonable result because once the packet size increases, the 

probability that the entire received packet cannot successfully 

recovered from noise/interference will increase. The 

interesting result is that even the PER performance is 

degraded as PS increases, the KVD with K = 5 always 

achieves the same PER performance as the orthodox VD 

does. For IoT sensor, value of K in the range 3 ≤ K ≤ 5 is 

recommended for reducing the decoder complexity by 

approximately 12.80 times to 21.33 times. 

 

 
 

 

 
Fig. 13 PER performance: KVD versus packet size. 64QAM, Fading channel 

with 5 taps, L = 60 

VI. CONCLUSION 

 
In this paper, a less-complex Kmin Viterbi decoder (KVD) for 

Wi-Fi 802.11a/n/ac/ah systems is proposed. Especially, the 

decoder aims to support the development of low-cost low-

power 802.11ah IoT sensor. The complexity of KVD in terms 
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of number of arithmetic operations and decoder processing 

time has been thoroughly evaluated. The evaluation results 

show that the complexity of KVD is reduced by 64/K times 

as compared to the orthodox VD. In the aspect of decoding 

performance, IEEE 802.11ah simulator simulated the PER and 

BER performance of 802.11ah system when using KVD with 

several K values such as 1, 3, 5, 10, 32 and 64. In which 

KVD with K = 64 is identical to orthodox VD. A lot of 

simulation conditions have been considered, for example, 

both AWGN and Rayleigh fading channel types, a wide range 

of decoder’s trace-back length (L = 20, 60, 100, 800) most of 

modulation types (BPSK, 16-256QAM), and several packet 

sizes (PS = 20, 100, 500 bytes). The simulation results show 

that PER performance of KVD with K = 1 is too worse to be 

applicable. Its PER performance degradation from orthodox 

VD is above 5dB in most of the simulation conditions. 

However, by a little bit increasing K value to 3 ≤ K ≤ 5 PER 

performance of KVD reaches to the same as that of the 

orthodox VD. Therefore it is recommended KVD with 3 ≤ K 

≤ 5 for real hardware implement of the decoder. By doing so 

it reduces the complexity of VD by approximately 64/5 = 

12.80 times to 64/3 = 21.33 times while guaranteeing the 

same PER performance as the orthodox VD does. 

 
At the outset, the proposed KVD is very suitable for low-cost 
low-power 802.11ah transceiver in IoT sensors. Designing 
hardware circuits of KVD with K = 3 and K = 5 for 802.11ah 
transceiver is the work can be done in future. The proposed 
decoding can also be useful for the high throughput Wi-Fi 
systems such as 802.11a/n/ac. 
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