
 © 2017, IJCSE All Rights Reserved 64

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-2 E-ISSN: 2347-2693

PER/BER Performance Evaluation of Less-Complex KVD Decoding

Architecture for IEEE 802.11 a/n/ac/ah WLANs

Dutta R.
1*

, Konar S.C.
2
 and Mitra K.

3

1*
Dept.of Electronics & Communication Engg., SIEM, Maulana Abul Kalam Azad University of Tech., Kolkata, India

2
 Dept. of Electrical Engineering, Indian Institute of Engg. Science & Technology (BESU), India

3
Dept.of Electronics & Communication Engg., SIEM, Maulana Abul Kalam Azad University of Tech., Kolkata, India

*Corresponding Author: ritam_siliguri@yahoo.com, Tel.: +91-94340-61896

Available online at: www.ijcseonline.org

Received: 09/Jan/2017 Revised: 18/Jan/2017 Accepted: 04/Feb/2017 Published: 28/Feb/2017

Abstract - In modern era of wireless communications Viterbi decoder (VD) is widely used to decode Binary Convolution

Codes (BCC) in many Wi-Fi systems such as WLAN 802.11a/n/ac/ah, Satellite communications, Mobile communications

etc. To obtain high decoding performance, the constraint length of BCCs is basically quite long. Whereas the complexity

of VD is exponentially affected by BCCs constraint length. Therefore Viterbi decoding of BCCs with long constraint

length cannot be used for systems or devices like Internet of Things (IoT) sensors, that require low power and less

hardware cost. In this work a less-complex Kmin Viterbi Decoder (KVD) is proposed in which the decoder's complexity is

inconsiderably affected by constraint length. For the decoding performance evaluation such as Packet Error Rate (PER)

and Bit Error Rate (BER) of the proposed decoder, a BCC with constraint length k = 7 is used. This code is required in

Wi-Fi systems such as IEEE 802.11a/n/ac/ah. A new standard 802.11ah for IoT applications is considered for simulation.

The PER performance of proposed KVD decoder in relation with several factors such as channel type, modulation type,

decoder's trace-back length and packet size has been evaluated. The proposed KVD achieves the same PER

performance as the orthodox VD does, while its complexity is reduced by approximately 12.80 times to 21.33 times

shown in result analysis.

Keywords—kmin Viterbi Decoder (KVD); Binary Convolution Code (BCC); IoT sensors; Packet Error Rate (PER); Bit

Error Rate (BER); Wireless Transceiver; 802.11 a/n/ac/ah WLAN

I. INTRODUCTION

In today’s world, many researchers are getting attracted by

internet of things (IoT) from all over the world. It is the key

technology to build smart and intelligent systems, smart city,

etc. [1]. The terms IoT refers to a network of things or objects

that are equipped with electronic devices or sensors, to collect

information of things and exchange the information with the

server computer. To exchange data, IoT sensors [2] must have

a wireless communication transceiver which follows one of

the standards such as Bluetooth, Zigbee, Wi-Fi 802.11ah, etc.

Among these standards, 802.11ah is being developed by IEEE

802.11 committee. Because of inheriting many features from

the successful Wi-Fi standards such as 802.11n/ac, the

802.11ah is expected to be widely used for developing

wireless transceiver in future IoT sensors. Unlike the orthodox

Wi-Fi transceivers, i.e., 802.11n/ac [3], which need high data

rate that is not a big issue in IoT transceiver. However,

complexity becomes a critical problem because of less area,

low-cost and low power consumed IoT sensors. Meanwhile,

as the purpose of transferring data, packet error rate (PER)

performance of transceiver is very important. Once the packet

is received with error, the transceiver should transfer that

packet again with higher signal power. As a result, transfer

time is longer and system consumes more energy. Thus

improving PER performance means reducing transfer energy.

To improve the PER performance, beside of employing

Orthogonal Frequency Division Multiplexing (OFDM)

technology to eliminate the interference between data sub-

carriers, the implement of Error Correction Code (ECC) is

necessary. Among many ECCs such as Binary Convolution

Code (BCC), Turbo Code (TC), Low Density Parity Check

(LDPC) Code etc., the BCC has been selected as a mandatory

part in Wi-Fi systems such as 802.11a/n/ac/ah.

To recover the transmitted data encoded by BCC, Viterbi

decoder (VD) is required at the receiver side. Viterbi

Decoding algorithm was developed by Andrew J. Viterbi in

1967 [4]. It has been widely used in many systems such as W-

CDMA, Wi-Fi 802.11a/n/ac/ah, satellite communications,

digital television, etc. in recent years. The low complex VD

for decoding BCC with constraint length k=3 is commonly

used for education purpose on high speed applications [5].

However, in real applications the complex VD for decoding

BCC with long constraint length is utilized to improve the

decoding performance such as PER. The modern Wi-Fi

systems IEEE 802.11a/n/ac/ah employ BCC with constraint

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 65

length k = 7. The equivalent VD has 2
k- 1

= 64 status nodes per

layer. It is thus called as 64-state VD. Basically, the

complexity of Viterbi decoder is (2
k-1

). 64-state VD is one of

the most complex block [6] at the receiver side of Physical

layer of Wi-Fi system.

In this paper, a low-complexity Kmin Viterbi decoding (KVD)

architecture is proposed. The orthodox and the proposed VDs

are implemented into IEEE 802.11ah simulator and the PER

performance of system is simulated when using the two

decoders. After thorough result and mathematical analysis, it

is concluded that the complexity of the proposed KVD is

smaller than that of the orthodox VD by about 12.80 times to

21.33 times while KVD achieves the same PER performance

as an orthodox VD does. Although this research aims to

support IoT sensors based on 802.11ah standard, the research

results are also expected to be applicable in other Wi-Fi

systems such as 802.11a/n/ac, or W-CDMA, satellite

communications, etc., that use VD for decoding BCCs with

high constraint length. The rest of this paper is organized as

follows: Sect. 2 briefly describes binary convolution coding

(BCC) and orthodox Viterbi decoder. Sect. 3 explains

proposed KVD decoding architecture. Sect. 4 evaluates the

complexity of KVD decoder in terms of number of

mathematical operations and computational time. Sect. 5

describes 802.11ah simulator and exposes PER/BER

simulation results. Conclusion is discussed in the final section

6. In future, the work can be extended for speed optimization

of modified VD to be dumped in FPGA hardware [7].

II. BCC CODED ORTHODOX VITERBI DECODING

A. Introduction

Fig. 1 illustrates the operation of BCC encoder and Viterbi

decoder in Wi-Fi 802.11a/n/ac/ah systems. At the transmitter

side BCC encoder encodes the information bit-stream I into

two encoded bit-streams A and B. At the receiver side Viterbi

decoder generates the bit-stream I′ from A′ and B′, which

are the estimated values of the encoded bit-streams A and B,

respectively [8]. Because of interference, noise and fading

effect of wireless environment, the estimated bit-streams A′

and B′ are hardly to be identical to A and B. The purpose of

Viterbi decoder is to recover the transmitted bit-stream I from

the wrongly-estimated A′ and B′.

It means that I′ should be the same as I. In case I′ does not

identical to I, the VD is considered to decode the data

unsuccessfully. The transfer packet of data is received

wrongly and the transmitter is requested to send the data

again.

Fig.1 BCC encoder at transmitter side of 802.11a/n/ac/ah systems. constraint

length k = 7, number of internal registers m = k − 1 = 6

B. Binary Convolution Coding (BCC)

The 802.11a/n/ac/ah systems [9] use BCC encoder with

constraint length k = 7. The inside of BCC encoder is shown

in Fig. 1. The encoder uses m = k - 1 = 6 registers, i.e., R0 to

R5, and two XOR gates to generate two output bits A and B

from every input bit I. The code rate is thus r = 1/2. To

increase the transfer rate, the higher code rates such as 2/3,

3/4, 5/6, etc., may be selected by puncturing the encoded bit-

streams A and B with an appropriate ratio. To implement XOR

gates that generate A and B, the industry standard generator

polynomials g0 = 1338 and g1 = 1718 are used, respectively.

The hardware design of BCC encoder is simple and does not

need much resource [10].

C. Operation of orthodox Viterbi Decoder (VD)

• Concept of Trellis Diagram

The trellis diagram of VD in 802.11a/n/ac/ah is shown in Fig.

2. It mimics the operation of BCC encoder. In which each

layer of the trellis has 64 nodes showing 2
6
 = 64 status values,

i.e., from 0 to 63, of m = 6 registers of BCC encoder. Because

six registers of BCC encoder are initialized by zero value, the

node with status value 0 in initial layer of VD’s trellis, i.e.,

denoted as node
(0)

 = 0, is selected to start the decoding

process. If the first input bit of BCC encoder I
(1)

 equals to

zero, or one, the next value of six registers R5R4R3R2R1R0 of

BCC encoder will be 6′b000000 = 0 or 6′b000001 = 1

respectively. Therefore, there are two paths connecting node
(0)

= 0 to node
(1)

 = 0 and node
(0)

 = 0 to node
(1)

 = 1. Note that

node
(1)

 = x refers to status node x in layer l. In layer 2, in case

the previous status node node
(1)

 = 0, the current status nodes

should be node
(2)

 = 0 and node
(2)

 = 1 if the second input-bit of

BCC encoder I
(2)

 = 0 and I
(2)

 = 1, respectively. Therefore,

there are two paths connecting node
(1)

 = 0 to node
(2)

 = 0 and

node
(1)

 = 0 to node
(2)

 = 1. In case node
(2)

 = 1, the current status

nodes should be node
(2)

 = 2 and node
(2)

 = 3 if I
(2)

 = 0 and I
(2)

 =

1, respectively. Thus, there are two paths connecting node
(1)

 =

1 to node
(2)

 = 2 and node
(1)

 = 1 to node
(2)

 = 3. In total, there are

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 66

4 connection paths in layer 2. Similarly, there are 8, 16, 32,

and 64 paths in layers 3, 4, 5, and 6. For layer l (l ≥ 7), there

are 64 × 2 = 128 paths connecting 64 nodes in layer l - 1 to

64 nodes in layer l, refer to Fig. 2.

Fig.2 Trellis Diagram of orthodox VD in 802.11a/n/ac/ah systems with each

layer 2m
 = 64 status nodes

In addition, a path that connects node
(l-1)

 to node
(l)

 is

accompanied with a pair of value I
(l)

/A
(l)

B
(l)

, in which I
(l)

, A
(l)

and B
(l)

 are respectively the l
th
 input-bit I, l

th
 encoded-bit A

and B of BCC encoder. While I
(l)

 has two values zero and one,

A
(l)

 and B
(l)

 can be calculated by eq. (1) and (2), respectively.

For examples, two paths that connect node
(0)

 = 0 to node
(1)

 = 0

and node
(0)

 = 0 to node
(1)

 = 1 are respectively accompanied

with values 0/00 and 1/11, see Fig. 2.

A
(l)

 = modulo(I
(l)

 + R1 + R2 + R4 + R5, 2) …………….(1)

B
(l)

= modulo(I
(l)

 + R0 + R1 + R2 + R5, 2) ……………..(2)

• Decoding Process

The input data of Viterbi decoder are the estimated bit-streams

A′ and B′ of A and B. The decoding process follows two

stages, i.e., forward calculation and trace-back, one after the

other. The pseudo code of the decoding process is shown in

Fig. 3a.

Fig.3 Pseudo codes of orthodox VD and KVD

Stage 1: Forward Calculation

This stage processes through a predefined L layers of the

trellis. In which L is an important parameter of VD called as

trace-back length. In each layer, a number of num_node loops

will be repeated. Each loop performs two tasks such as

calculate_path_metric() & calculate_accumulated_metric().

Note that num node presents the number of nodes should be

calculated in each layer. For layer 1, 2, 3, 4, 5 and 6 values of

num_node will be 1, 2, 4, 8, 16 and 32 respectively. For other

layers, we have num_node = 64.

Task calculate_ path_ metric() in layer l (l ≥ 1) calculates

path metric of all the paths connecting nodes in layer l – 1 to

nodes in layer l. In case of hard-decision VD, path metric is

measured as Hamming distance between the expected value

A
(l)

, B
(l)

 and the estimated values A’
(l)

, B’
(l)

. The calculation is

shown in eq. (3). In which A
(l)

, B
(l)

, A’
(l)

 and B’
(l)

 are all binary

data. In case of soft-decision VD, path metric is measured as

Euclidean distance between A’
(l)

, B’
(l)

 and A’
(l)

, B’
(l)

. The

calculation is shown in eq. (4). In this case, A
(l)

, B
(l)

, A’
(l)

 and

B’
(l)

 are the log likelihood ratio (LLR) values and are

represented by a number of binary bits, i.e., denoted as D bits.

p(hard) =| A’
(l)

 − A
(l)

 | + | B’
(l)

 − B
(l)

 | ………………(3)

p(sof t) = (A’
(l)

 −A
(l)

)2 + (B’
(l)

 −B
(l)

)
2
 ….…………..(4)

Task calculate_ path_ metric() in layer l (l ≥ 1) calculates

accumulated metric of all nodes in layer l. For layer l with l <

7, node j in layer l is connected with only one node, e.g., node

i, in layer l - 1. The calculation follows eq. (5). For layer l with

l ≥ 7, node j in layer l is connected with two nodes, e.g., nodes

i
1
 and i

2
, in layer l - 1. The calculation follows eq. (6) - (8). In

which mi(l− 1) and mj(l) denote accumulated metric of node i

in layer l - 1 and of node j in layer (l) (0 ≤ i, j ≤ 63)

respectively; pi, j denotes path metric of the path that connects

node i and node j and min(a, b) function returns to the smaller

value of a and b.

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 67

mj
(l)

 = mi
(l− 1)

 + pi, j ………………………………….(5)

m1j
(l)

 = mi1
(l−1)

 + pi1, j ……………………………… (6)

m2j
(l)

 = mi2
(l−1)

 + pi2, j ………………………………(7)

mj
(l) = min (m1j

(l)
 , m2j

(l)) ……………...(8)

It means that accumulated metric of a node in one layer is

defined as the sum of accumulated metric of its connected

node in previous layer with its path metric. For layer l with l

≥ 7, each status node has two connected paths with previous

layer’s status nodes. The path that results to smaller

accumulated metric is considered to be survival path. And

that smaller accumulated metric will be selected.

Fig. 4 illustrates the calculation of accumulated metric for

node(l) = 0 and node(l) = 1, with l ≥ 7. The forward calculation

is repeated from layer to layer until layer l = L is completed.

At layer L, node that has the smallest accumulated metric will

be selected as a start point for the next stage, i.e., trace-back.

Remember that L is known as trace-back length.

Fig.4 Accumulated Metric Calculation Process

Stage 2: Trace-back

Trace-back is a process in which the decoded data I ′ is

computed bit-by-bit in the order I′L , . . . , I ′(2)
, I′(1)

 . In each

layer, there are two tasks such as find_snode() and

decode_data() are performed, refer to Fig. 3a.

Task find_snode() in layer l (l ≥ 1) finds the most suitable

node snode
(l)

 among 64 nodes in that layer. For layer l = L,

snode
(l)

 is obtained by comparing accumulated metric of all

64 nodes in layer L. It should be the node that has the

smallest accumulated metric. For the other layers, i.e., layer l

with l < L, the most suitable node snode
(l)

 is the one that has

smaller accumulated metric between the two nodes having

connection with snode
(l+1)

 To know which nodes having

connection with snode
(l+1)

, the VD needs to memorize the

survival paths of all 64 nodes in all L layers of the trellis.

Task decode_data() in layer l (l ≥ 1) estimates I′(l) of the

transmitted data I
(l)

 from snode
(l)

. To do that the VD needs to

memorize the trellis architecture. It means that the

accompanied data I
(l)

 of all survival paths of the trellis must

be stored in memory. The decoded data I ′ (l)
 will be the

accompanied data I
(l)

 of the path that connects snode
(l-1)

to

snode
(l)

.

III. PROPOSED KMIN VITERBI DECODING (KVD)

Similar to the orthodox VD, the proposed KVD also

processes through L layers in which L is known as trace-back

length. The process includes two stages such as forward

calculation and trace-back. Unlike the orthodox VD which

relies on architecture of trellis diagram, processing of KVD

follows mathematical equations. Therefore, the KVD does

not need to memorize trellis diagram. In addition, the KVD

calculates path metrics and accumulated metrics of only K

nodes (not all 64 nodes) per layer. In which K is a parameter

of KVD (K ≤ 64). The pseudo code of KVD is shown in Fig.

3b.

Stage 1: Forward Calculation

This stage processes through L layers. In each layer, a

number of Kmin_node loops will be repeated. Each loop

performs four tasks such as specify_status_node(),

calculate_path_metric(), calculate_accumulated_metric()

and sort_Knode(). Let define K as a known parameter of

KVD, Kmin_node takes the minimum value of num_node and

K. Remember that, for layer 1, 2, 3, 4, 5 and 6 values of

num_node will be 1, 2, 4, 8, 16 and 32 respectively. For other

layers, we have num_node = 64. For example, if K = 3 then

Kmin_node = 1 and Kmin_node = 2 in layer 1 and 2 respectively

and Kmin_node = 3 for layer l (l > 2). Task

specify_status_node() in layer l (l ≥ 1) specifies child nodes

cnode
(l)

 of layer l that have connection with each of the Kmin

_node parent nodes pnode
(l− 1)

 in layer l - 1.

In this paper, we consider pnode
(l− 1)

and cnode
(l)

 as parent

node and child node in layer l respectively. Note that pnode
(l−

1)
 and cnode

(l)
 respectively present status values of six

registers of BCC encoder in the (l - 1)
th

 and the l
th

 cycles.

Because after each cycle value of six registers is shifted to the

most significant bit (MSB) by one bit, the value should be

double then be modulo by 2
6
 = 64. In addition, the least

significant bit R0 of the six register is assigned to the l
th

 input

bit I
(l)

, the new value of six registers should be added to I
(l)

after being doubled. Therefore, we can specify cnode
(l)

 from

pnode
(l− 1)

as eq. (9) in which I
(l)

 has two values zero and one.

cnode
(l)

 = modulo(2 ×pnode
(l− 1)

, 64) + I
(l)

 ……………… (9)

For example, from parent node pnode
(l− 1)

 = 5 there are two

child nodes cnode
(l)

 = 10 and cnode
(l)

 = 11; and from pnode
(l−

1)
 = 33 there are two child nodes cnode

(l)
 = 2 and cnode

(l)
 = 3

refer to Fig. 5a. If layer l - 1 has K parent nodes pnode
(l− 1)

 a

maximum of 2K child nodes cnode
(l)

 will be generated. In

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 68

case any two parent nodes have the same connection with any

two child nodes, the total number of child nodes will be

smaller than 2K. Because of the modulo function in eq. (9)

we know that two parent nodes pnode
(l− 1)

 = x (x = 0, 1, . .

. , 31) and pnode
(l− 1)

 = 32 + x will have the same child nodes.

An example in Fig. 5a shows that there are 6 but not 8 child

nodes are generated from K = 4 parent nodes. That is because

two parent nodes pnode
(l− 1)

 = 1 and pnode
(l− 1)

 = 31

have the same child nodes cnode
(l)

 = 2 and cnode
(l)

 = 3. Task

calculate_path_metric() calculate the path metrics. From K

parent nodes there are 2K path metrics will be calculated. The

calculation follows eq. (3) or (4) as the orthodox VD does.

Task Kmin_calculate_accum_metric() in layer l (l ≥ 1)

calculates accumulated metrics of the child nodes specified in

specify_status_ node() task. From Fig. 5a we see that a child

node cnode
(l)

 may have one or two connection paths. The path

may come from pnode
(l− 1)

 = x (x = 0, 1, . . . , 31), i.e., known

as s
(l)

 = 1 or come from pnode
(l− 1)

 = 32 + x, i.e., known as s
(l)

= 2. For simplicity we assume that there are 2K different

child nodes generated from K parent nodes and each child

node have only one connection path. The path may be s
(l)

 = 1

or s
(l)

 = 2.

For example, Fig. 5b shows that child node cnode
(l)

 = 2

generated from pnode
(l− 1)

 = 1 and from pnode
(l− 1)

 = 31 is

considered to be two different child nodes with the same

status value cnode
(l)

 = 2 but different paths, i.e., s
(l)

 = 1 and s
(l)

= 2 respectively.

For child node that has s
(l)

 = 1, the accumulated metric m1
(l)

is

calculated as eq. (6) while, m2
(l)

is assigned to a very large

constant MAX that is expected to be always larger than m1
(l)

.

Similarly, for child node that has s
(l)

 = 2, m2
(l)

 is calculated as

eq. (7) while m1
(l)

 is assigned to MAX. The final accumulated

metric of child node cnode
(l)

 is the minimum value of m1
(l)

and m2
(l)

 as eq. (8), refer to Fig. 5b.

Task sort_Knode() in layer l (l ≥ 1) will find the top child

nodes that have smallest accumulated metrics. It then finds

whether there are any two child nodes having the same status

value cnode
(l)

 but different accumulated metric m
(l)

 or not. If

there are, the one with larger accumulated metric will be

removed from the list. Finally, only K nodes pnode
(l)

 will be

selected to become the parent nodes for next layer, refer to

Fig. 5c and 5d.

Figure 5 An example of one loop operation in layer l of KVD of K = 4

Stages 2: Trace-back

Similar to the orthodox VD, trace-back stage of KVD

computes the decoded data I′ bit-by-bit in the order I′ (L)
 , . . .

, I ′ (2)
, I ′ (1)

. Each layer performs two tasks such as

Kmin_find_snode() and Kmin_decode_data(), refer to Fig. 3b.

Task Kmin_find_snode() in layer l (l ≥ 1) finds the most

suitable node snode
(l)

 among K parent nodes in that layer. For

layer l = L, snode
(l)

 is obtained by comparing accumulated

metric of 2K child nodes cnode
(l)

. It should be the node that

has the smallest accumulated metric.

In addition, from eq. (9) we deduce to eq. (10) and (11) to

specify two nodes snode1
(l - 1)

 and snode2
(l - 1)

 in layer l -1 that

have connection with snode
(l)

 in layer l. In which floor(x)

function returns to the largest integer value that is smaller

than or equal to x. If we call s
(l)

 as the survival path of

snode
(l)

then s
(l)

 is equal to either 1 or 2. If s
(l)

 = 1 the

connection between snode
(l)

 and snode1
(l - 1)

 results to smaller

accumulated metric. Otherwise, the connection between

snode
(l)

 and snode2
(l -1)

 results to smaller accumulated metric.

Therefore, we propose eq. (12) to trace back the selected

node snode
(l-1)

 from snode
(l)

. By using eq. (12) KVD needs to

memorize only K status nodes pnode
(l)

 and their survivor

paths s(l) per layer.

snode1
(l - 1)

 = floor(snode
(l)

 /2) ………………………(10)

snode2
(l - 1)

 = floor(snode
(l)

 /2) + 32 …………………(11)

snode
(l-1)

 = floor(snode
(l)

 /2)+ 32 × (s(l)
 − 1) ………(12)

For example, if snode
(l)

 = 1 and s
(l)

 = 2, then we know that

snode
(l-1)

 = 32.

Task decode_data() in layer l (l ≥ 1) estimates I
(l)

 of the

transmitted data I
(l)

. Instead of memorizing the accompanied

data I
(l)

 of all paths as the orthodox VD does, we propose a

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 69

mathematics equation to derive I′ (l)
 from snode

(l)
. From eq.

(9) we see that if I
(l)

 = 0, value of node
(l)

 will be even.

Otherwise, value of node
(l)

 will be odd. Based on the

even/odd property of snode
(l)

, we can know whether I′ (l)
 = 0

or I′ (l)
 = 1. In short, we propose eq. (13) to decode I′ (l)

 from

snode
(l)

.

I′ (l)
 = modulo(snode

(l)
, 2) …………………………(13)

Fig. 6 shows a simple example of KVD with K = 3 and trace-

back length L = 8. In most of layers 2K = 6 child nodes are

generated and only K = 3 nodes will be selected to become

parent nodes of next layer. In layer 7, only 4 child nodes are

generated because the parent nodes 8 and 40 have the same

child nodes 16 and 17. In the trace-back stage, we assume

that path from node 40 to 16 is the survival path. Therefore,

node 40 (but not node 8) will be selected.

Finally, the trace-back line goes through nodes 33, 16, 40, 20,

10, 5, 2, 1 and 0 see Fig. 6. Therefore, the decoded data will

be I
(8)

 → I(1)
 = 1, 0, 0, 0, 0, 1, 0, 1.

Fig.6 A simple example of KVD. K = 3 and trace-back length L = 8

IV. COMPLEXITY ANALYSIS OF BOTH DECODING

ARCHITECTURE

In this section the complexity of orthodox VD and KVD in

terms of number of mathematical operations and processing

time is thoroughly analyzed.

4.1 Mathematical operations in VD and KVD

We denote Nsub/add, Nabs and Nsqr respectively as the total

number of subtract/adder, absolute and square operations will

be used by Viterbi decoder. To calculate a path metric, eq.(3)

and (4) show that a hard decision VD requires 3

subtract/adder and 2 absolute operations while a soft decision

VD requires 3 subtract/adder and 2 square operations. To

calculate accumulated metric for a node, eq. (6), (7) and (8)

show that 2 subtract/adder operations are needed. Because the

trace-back length L of VD is commonly much larger than 6,

the following conclusions are approximately true.

• For the orthodox VD, there are 64 × 2 = 128 path metrics

and 2
(k-1)

 = 64 (k = 7) accumulated metrics will be calculated

per layer. Therefore, we have Nsub/add = (3 ×128 + 2 × 64) ×

L = 512 × L = 8 ×2
(k-1)× L. In addition, there are Nabs = 2 ×

128 × L = 256 × L = 4 ×2
(k-1)× L and Nsqr = 4 ×2

(k-1)× L

operations are respectively required in case of hard decision

and soft decision.

• For the KVD, we have Nsub/add = (6K+2K)×L = 8 × K × L

and Nabs = 4 × K × L and Nsqr = 4 × K × L are required in

case of hard decision and soft decision respectively. We see

that the numbers of subtract/adder, absolute and square

operations of KVD does not affected by BCC’s constraint

length k or the number of status nodes of decoder, while the

orthodox VD does. Table 1 shows the number of arithmetic

operations of orthodox VD and KVD in case trace-back

length L = 60. At the outset, it can surely be concluded that

the number of arithmetic operations is lower by 64/K times if

using KVD instead of orthodox VD.

4.2 Total computational time analysis report

The proposed system that includes BCC encoder (k = 7) and

Viterbi decoding is done in MATLAB. The VD is whether

orthodox VD or KVD with several values of K such as K = 1,

3, 5, 10 and 32. The number of transfer bits per packet is

4000 and the number of packets is 5000, the trace-back

length L = 60. Each packet is divided into (4000/60) = 67

blocks. The processing time of system in case of using

orthodox VD and KVD with K = 1, 3, 5, 10 and 32 is shown

in Table 2. In case of soft-decision, D = 3 bits is selected.
Table 1 Number of Arithmetic Operations with L = 60

VD Type Nsub/add Nabs (Hard) Nsqr (Soft)

Orthodox VD 30720 15369 15369

KVD, K= 32 15360 7680 7680

KVD, K= 10 4800 2400 2400

KVD, K= 5 2400 1200 1200

KVD, K= 3 1440 720 720

KVD, K= 1 480 240 240

Table 2 Processing time of system when using orthodox VD and KVD with L

= 60 and D = 3

VD Type Hard Decision Soft Decision

Time Unit Time Unit

Orthodox VD 1 Hr. 9m

45s

58.1 1 Hr.

15m 30s

58.5

KVD, K= 32 29m 45s 24.8 32m 53s 25.6

KVD, K= 10 8m 41s 7.2 9m 11s 7.2

KVD, K= 5 4m 26s 3.7 4m 58s 3.9

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 70

KVD, K= 3 2m 50s 2.4 3m 12s 2.5

KVD, K= 1 1m 12s 1 1m 17s 1

In table 2, the Time column shows the processing time in

term of hour(h)/minute(m)/second(s). The time h/m/s is then

converted into the number of seconds and divides to the

processing time of KVD with K = 1. The result is shown in

Unit column. From Table 2 we see that the processing time in

both cases, i.e., hard-decision and soft-decision, is almost

linear proportional to K value. It means that we can reduce

the computational resource by approximately 64/K times if

using KVD instead of orthodox VD. The processing of soft-

decision VD is a little bit longer than that of hard-decision

VD. That is because the calculation of square operation takes

more clock cycles than the calculation of absolute operation.

V. PER/BER SIMULATION RESULTS

To simulate performance of the orthodox VD and the

proposed KVD, a draft version of 802.11ah simulator is used.

Block diagram of the simulator is shown in Fig. 7. At the

transmitter side, ‘PSDU GEN’ block generates a stream of

random data for transmitting. ‘SIG GEN’ block generates the

data for signal field of the transfer packet. ‘Scrambler’ block

performs the scrambling to avoid sequence of zeros or ones.

‘BCC Encoder’ block encodes information bits. ‘OFDM SYM

SPLIT’ block splits the stream of data into a number of

orthogonal frequency division multiplexing (OFDM) symbols.

‘Interleave’ block changes the bit-order in each OFDM

symbols. Its purpose is to deal with burst error that may

appear during the transmission. ‘Mapper’ block maps the data

into constellation. The 802.11a/n/ac/ah support several types

of modulation such as binary phase shift keying (BPSK),

quadrature phase shift keying (QPSK), 16 quadrature

amplitude modulation (16-QAM), 64-QAM and 256-QAM.

‘Pilot’ block generates the pilot values. ‘Preamble Memory’

stores preamble data of the transfer packet. This data is used

by receiver to estimate channel condition. ‘Subcarrier

Allocate’ block allocates output of ‘Mapper’ to data

subcarriers, and output of ‘Pilot’ to pilot subcarriers of OFDM

symbols. Each OFDM symbol has 64 subcarriers which

include 48 data subcarriers, 4 pilot subcarriers and 8 null

subcarriers. ‘IFFT’ blocks perform the invert fast Fourier

transforms so that subcarriers within symbol become

orthogonal. It also converts data from frequency-domain to

time-domain. ‘GII’ block inserts guard interval (GI) to protect

data of a symbol from interference with data of adjacent

symbols. In this simulator we apply normal guard interval.

‘OFDM SYM CONCAT’ block concatenates the OFDM

symbols into a continuous stream. This stream of data is sent

to the receiver via a wireless channel which can be additive

white Gaussian noise (AWGN) channel or Rayleigh fading

channel.

Fig.7 Block Diagram of 802.11ah PHY simulator

The blocks at receiver side do the opposite tasks as those of

transmitter side do. In detail, ‘OFDM SYM SPLIT’ splits

stream of data into several OFDM symbols. ‘GIR’ removes

the GI subcarriers from OFDM symbols. ‘FFT’ performs fast

Fourier transfer to convert data from time domain to

frequency domain. ‘Pilot Data Extract’ extracts data and pilot

subcarriers for further processing. The pilot subcarriers are

used for phase tracking which is not implemented in this

simulator. In the channel training phase, the data subcarriers

are used by ‘Channel Est.’ block to estimate the channel

condition. In the data phase, the data subcarriers are passed to

‘Demapper’. In case of hard decision, ‘Demapper’ estimates

the input values of ‘Mapper’. In case of soft decision,

‘Demapper’ calculates the LLR values of input data of

‘Mapper’. ‘De-Interleave’ does the opposite task of

‘Interleave’. In which it returns the data subcarriers into the

original position. ‘OFDM SYM CONCAT’ concatenates the

data from OFDM symbols into one stream before giving to

‘Viterbi Dec.’ The ‘Viterbi Dec.’ decodes the received data to

obtain the transmitted information. ‘De-Scrambler’ does the

opposite task of ‘Scrambler’. ‘Scrambler’ and ‘Descrambler’

are used to avoid long sequence of zeros or ones. Thus, they

can partly solve the high peak to average power ratio (PAPR)

problem of a communication system. The output of

‘Descrambler’ at receiver side is compared with the input of

‘Scrambler’ at transmitter side to check whether the receiver

can recover the transmitted data correctly or not. In this work,

the BER and PER performance of Kmin Viterbi decoder is

evaluated with several values of K such as 1, 3, 5, 10, 32 and

64. Note that, K = 64 of KVD have the same performance as

orthodox Viterbi decoder. The simulation parameters are

shown in Table 3.

Table 3 Simulation parameters

Parameters Values

Simulator
IEEE 802.11ah draft
version

Number of iterations 5000

Number of special streams in Tx x Rx 1 x 1

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 71

Channel type AWGN, Rayleigh fading

Channel estimation Ideal

Modulation types BPSK, 16 – 256 QAM

Code rate ½, ¾

Transfer data type Random

Viterbi Decoders data bit width 3-bit soft-decision

5.1 KVD versus Channel Type

In this subsection, performance of KVD in AWGN and

Rayleigh fading channels is evaluated. In case of fading

channel, the number of channel taps is set to 5. The PER

performance is shown in Fig. 8a. In addition, the BER

performance is also provided in Fig. 8b for reference. From

Fig. 8a we can see that the PER performance of KVD in

AWGN channel is better than that of in Fading channel. In

case of AWGN channel, KVD with K = 3 achieves the same

PER as the orthodox VD, i.e., KVD with K = 64, does. In

case of fading channel, KVD with K = 5 achieves the same

PER as the orthodox VD does. However, the PER

performance of KVD with K = 1 is very worse in both

channels. Amounts of PER performance degradation (K

= 1) are 3dB and 8dB in cases of AWGN and Fading

channels respectively. Therefore, the KVD with 3 ≤ K ≤ 5 is

recommended for real hardware implementation to reduce the

complexity of decoder by approximately 64/5 = 12.80 times

to 64/3 = 21.33 times.

For applications in which BER performance is more

important than PER performance, the BER results in Fig. 8b
are shown for reference. This figure shows that the BER

performance of KVD is eventually degraded if K value

reduces. However, the degradation of BER performance of
KVD is less significant in case of AWGN channel. Because

of the degradation of BER performance, the using of KVD is
a trade-off between complexity and BER performance.

Fig. 8 PER & BER performance: KVD versus channel types. 64QAM, L =

60, PS = 100 bytes/packet.

5.2 KVD versus trace-back length L

In this subsection, performance of KVD in relation with

several values of decoder’s trace-back length L is evaluated.

Basically, selecting L value is a trade-off between PER/BER

performance and hardware cost. There is a fact that

increasing the value of trace-back length L will result to

better PER/BER performance but require more hardware cost

and power consumption. Fig. 9 shows the PER performance

of 802.11ah system when using KVD with several values of

trace-back length L such as L = 20, L = 60, L = 100, and L =

800. These results prove for the fact that increasing L value

will result to better PER performance. For example, to

achieve the same PER performance (PER = 0.1), the

orthodox VD (with K = 64) can reduce the signal-to-noise

ratio (SNR) from SNR = 36 dB to SNR = 33.5 dB to SNR =

31.5 dB and to SNR = 27 dB by increasing the trace-back

length from L = 20 to L = 60 to L = 100 and to L = 800

respectively. However, the Viterbi decoder with smaller

value of L is preferred for applications which require low-

cost and low-power such as IoT sensors Wireless LANs [11],

[12]. Fig. 9 also shows that when using Viterbi decoder with

smaller trace-back length L, the proposed KVD decoding one

is more robust in terms of reducing complexity [13].

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 72

Fig. 9 PER performance: KVD versus decoder’s trace-back length. 64QAM,

PS = 100 bytes/packet.

For examples, in cases L = 20, L = 60, L = 100 and L = 800,
the proposed KVD with K = 3, K = 5, K = 5 and K = 10
respectively achieve the same PER performance as the
orthodox VD does. It means that the complexity can be

reduced by 21.33, 12.80, 12.80 and 6.4 times respectively.
For all the cases, PER performance of KVD with K = 1 is
very worse. The PER performance degradation is above 5dB

in all cases. Therefore the KVD with 20 ≤ L ≤ 60 and 3 ≤ K

≤ 5 is recommended for developing IoT sensors. In addition,

within an amount of acceptable hardware cost, using the
proposed KVD decoding one with larger trace-back length L

will provide better PER performance as compared to the
orthodox one with smaller L does.
For examples, Fig. 10 shows that PER performance of the
KVD with K = 5, L = 800 is better than that of the orthodox
one with K = 64, L = 100; and PER performance of the KVD
with K = 5, L = 60 is better than that of the orthodox VD with
K = 64, L = 20.

Fig. 10 PER performance: VD with K = 5 and K = 64 versus trace-back

length L = 20, 60, 100, 800. 64-QAM, PS = 100 bytes/packet

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 73

Fig. 11 BER performance: KVD versus decoder’s trace-back length.

64QAM, PS = 100bytes/packet.

For reference purpose, the BER performance of KVD is
shown in relation with L in Fig. 11. This figure shows that in
case of small L, e.g., L = 20, the degradation of BER
performance when K = 5 as compared to K = 64 is

insignificant. However, for large L such as L ≥ 60 the BER

performance is eventually degraded and amount of
degradation is significant. In these cases, the proposed KVD
decoding one may be used in consideration the trade-off
between BER performance and complexity.

5.3 KVD versus modulation type

In this subsection, we evaluate the PER performance of KVD

in relation with several modulation types such as BPSK,

16QAM, 64QAM and 256QAM. Our simulation results are

shown in Fig. 12. The PER performance of Kmin one with K =

1 is very worse in all cases. As compared to case K = 64, the

PER performance degradation is about 10dB, 8dB, 8dB and

7dB if modulation type is BPSK, 16QAM, 64QAM and

256QAM respectively (at PER = 0.1). If K = 3 the PER

performance is significantly improved. As compared to case

K = 64, the PER performance degradation is only about

0.2dB, 1dB, 1.8dB and 1.3dB in cases of BPSK, 16QAM,

64QAM and 256QAM respectively. In all modulation types,

the Kmin one with K = 5 achieves the same PER performance

as the orthodox one (with K = 64) does. Selecting K value in

the range 3 ≤ K ≤ 5 is again recommended to reduce the

complexity of decoder by 64/5 = 12.80 times to 64/3 = 21.33

times.

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 74

Fig. 12 PER performance: KVD versus modulation types. Fading channel

with 5 taps, L = 60, PS = 100 bytes/packet.

5.4 KVD versus packet size (PS)

In this subsection the PER performance of KVD in relation

with several packet sizes PS is evaluated such as PS = 20, PS

= 100 and PS = 500 bytes/packet. The simulation results are

shown in Fig. 13. From the results in Fig.13a, b and c, we can

see that PER performance of KVD with K = 1 is very worse

in all cases. The PER degradation is above 5dB (at PER =

0.1). When K = 3 the PER performance is much more

improved. As compared to the orthodox decoder with K = 64,

the PER degradation is about 1.7dB, 1.5dB and 0.3dB (at

PER = 0.1) in cases PS = 20, PS = 100 and PS = 500

bytes/packet, respectively. In all PS cases, the KVD with K =

5 achieves the same PER performance as the orthodox VD

(K=64) does. In addition, Fig. 13d shows that the PER

performance is degraded if packet size PS increases. This is a

reasonable result because once the packet size increases, the

probability that the entire received packet cannot successfully

recovered from noise/interference will increase. The

interesting result is that even the PER performance is

degraded as PS increases, the KVD with K = 5 always

achieves the same PER performance as the orthodox VD

does. For IoT sensor, value of K in the range 3 ≤ K ≤ 5 is

recommended for reducing the decoder complexity by

approximately 12.80 times to 21.33 times.

Fig. 13 PER performance: KVD versus packet size. 64QAM, Fading channel

with 5 taps, L = 60

VI. CONCLUSION

In this paper, a less-complex Kmin Viterbi decoder (KVD) for

Wi-Fi 802.11a/n/ac/ah systems is proposed. Especially, the

decoder aims to support the development of low-cost low-

power 802.11ah IoT sensor. The complexity of KVD in terms

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 75

of number of arithmetic operations and decoder processing

time has been thoroughly evaluated. The evaluation results

show that the complexity of KVD is reduced by 64/K times

as compared to the orthodox VD. In the aspect of decoding

performance, IEEE 802.11ah simulator simulated the PER and

BER performance of 802.11ah system when using KVD with

several K values such as 1, 3, 5, 10, 32 and 64. In which

KVD with K = 64 is identical to orthodox VD. A lot of

simulation conditions have been considered, for example,

both AWGN and Rayleigh fading channel types, a wide range

of decoder’s trace-back length (L = 20, 60, 100, 800) most of

modulation types (BPSK, 16-256QAM), and several packet

sizes (PS = 20, 100, 500 bytes). The simulation results show

that PER performance of KVD with K = 1 is too worse to be

applicable. Its PER performance degradation from orthodox

VD is above 5dB in most of the simulation conditions.

However, by a little bit increasing K value to 3 ≤ K ≤ 5 PER

performance of KVD reaches to the same as that of the

orthodox VD. Therefore it is recommended KVD with 3 ≤ K

≤ 5 for real hardware implement of the decoder. By doing so

it reduces the complexity of VD by approximately 64/5 =

12.80 times to 64/3 = 21.33 times while guaranteeing the

same PER performance as the orthodox VD does.

At the outset, the proposed KVD is very suitable for low-cost
low-power 802.11ah transceiver in IoT sensors. Designing
hardware circuits of KVD with K = 3 and K = 5 for 802.11ah
transceiver is the work can be done in future. The proposed
decoding can also be useful for the high throughput Wi-Fi
systems such as 802.11a/n/ac.

References

[1] Liu T.Y., Zhou G.: “Key Technologies and Applications of

Internet of Things”. In the Proceedings of fifth Int. Conf. on
Intelligent Computation Technology and Automation (ICICTA-
2012) , Xian, pp.197–200, 2012.

[2] Girau R, Martis S, Atzori L, “Lysis: a platform for IoT
distributed applications over socially connected objects”,
IEEE Internet of Things Journal (IoTJ), Vol.4(1), pp. 1-12,
2016.

[3] Tran T. H., Nagao Y., Kurosaki M., Sai, B., Ochi, H.: “ASIC
Implement of 600Mbps IEEE 802.11n 4x4 MIMO Wireless LAN
System”. In the Proceedings of 14th IEEE Int. Conf. on Advan.
Commu. Tech. (ICACT-2012), Korea, pp. 360–363, 2012.

[4] Viterbi, A.: “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transactions
on Information Theory” Vol.1(1) pp. 260-269, 1967.

[5] Dutta R., Van Der Mast C., “Virtex 4 FPGA Implementation of
Viterbi Decoded 64-bit RISC for High Speed Application using
Xilinx”, International Journal of Computer Applications
(IJCA), Vol.88(14), pp. 30-35, 2014.

[6] Maharatna K., Troya A., Krstic M., Grass E.: “On the
implementation of a low-power IEEE 802.11a compliant Viterbi
decoder”. In the Proceedings of 19th Int. Conference on VLSI
Design (DOI:10.1109/VLSID). Bombay, pp.124, 2006.

[7] Chakraborty D, Raha P, Bhattacharya A, Dutta R; “Speed
Optimization of a FPGA based modified Viterbi Decoder”, in
the Proc. of IEEE Int. Conf. on Computer, Communication and
Informatics (ICCCI-2013), Coimbatore, pp. 321-326; 04-06
January, 2013. ISBN: 978-1-4673-2907-1.

[8] Sandesh, Y.M., Kasetty, R.: “Implementation of Convolution
Encoder and Viterbi Decoder for Constraint Length 7 and Bit
Rate ½”, Int. Journal of Engineering Research and Applications
Vol.3(4), pp. 42-46, 2013.

[9] IEEE 802.11 committee: Part 11: “Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications”. IEEE Std. 802.11a, Vol.38(6), 1999.

[10] Tran T.H., Nagao Y., Ochi H.: “Algorithm and Hardware
Design of A 2D Sorter-based K-best MIMO Decoder”.
EURASIP Journal on Wireless Communications and
Networking DOI: 10.1186/1687-1499-2014-93, Vol.8(3), 2014.

[11] Dutta R, Pradhan PC, Sharma P, Guha S: “VoIP

Technology based modified CAC scheme for IEEE 802.11

Wireless LANs”, In the Proceedings of Int. Conf. on
Computation and Communication Advancement (IC3A) – 2013,

West Bengal, pp. 174-180, 2013.
[12] Dutta R, Chaudhuri D, Mohanto B, Das M; “A Proposed

DLCCS Algorithm for High Speed Operation & Implementation
on FPGA”, International Journal Nanotechnology &
Applications (IJNA), Vol.8(1), pp. 01-12, 2014.

[13] Liu Y.S., Tsai Y.Y.: “Minimum decoding trellis length
and truncation depth of wrap-around Viterbi algorithm for
TBCC in mobile WiMAX”, EURASIP Journal on Wireless
Communications and Networking, Vol. 44(8) DOI:
10.1186/1687-1499-2011-111, 2011.

Authors Profile

Ritam Dutta pursued his Bachelor of
Technology from Sikkim Manipal Institute
of Technology, Sikkim Manipal University,
Sikkim, India in 2007 and Master of
Technology from SRM University,
Chennai, India in year 2009. He is currently
pursuing Ph.D. from Sikkim Manipal
University since 2017 and currently
working as Assistant Professor (Sr.) in
Department of Electronics &
Communication Engineering, Surendra Institute of Engineering &
Management, MAKAUT (Kolkata) since 10 July 2009. He is a
member of IAENG, IRED, ISTE and many more of repute. He has
published a Book and more than 20 research papers in reputed
international journals including Thomson Reuters and conferences
including IEEE and it’s also available online. His main research
work focuses on Low Power VLSI, Solid State Devices, Sensors and
Computational Intelligence based education. He has almost 9 years
of teaching experience.

Sukumar Chandra Konar is Professor. He is
Ex-Head, Dept. of Electrical Engineering,
Indian Institute of Engineering Science &
Technology (IIEST), Shibpur, India. He
pursued his Bachelor of Engineering from
Calcutta University, earned his Master of
Engineering from Calcutta University, India.
He earned his Ph.D. from Indian Institute of
Engineering Science & Technology (IIEST),
Shibpur. He has published many research
papers in reputed international journals including Thomson Reuters
(SCI) and conferences including IEEE. His main research work

 International Journal of Computer Sciences and Engineering Vol.-5(2), Feb 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 76

focuses on Power Systems, Robust Stability. He has almost 35 years
of teaching experience. He is a member of Institute of Engineers
(India), ISTE and many more of repute.

Krishanu Mitra pursued his Bachelor of
Technology from Asansol Engg College,
WBUT, India in 2010 and Master of
Technology from Bengal Inst. Of
Technology & Management, Chennai,
India in year 2014. He is currently working
as Assistant Engineer in Department of
Electronics & Communication
Engineering, Surendra Institute of
Engineering & Management, MAKAUT
(Kolkata) since 2010. He has published many research papers in
reputed international & national journals and conferences and it’s
also available online. His main research work focuses on VLSI
architecture, Electronic Devices and Systems.

