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Abstract: Predictive maintenance is crucial for minimizing unplanned downtime in industrial machinery. This research 

proposes a hybrid deep learning approach using Convolutional LSTM Networks (Conv-LSTM) for fault detection in wind 

turbine gearboxes. The Conv-LSTM model combines convolutional neural networks (CNNs) for spatial feature extraction and 

long short-term memory (LSTM) networks for temporal modeling, enabling it to capture intricate patterns in multivariate sensor 

data. The approach was evaluated on the AI4I Predictive Maintenance dataset from Kaggle, containing real-world sensor 

readings from an operational wind turbine gearbox. The Conv-LSTM architecture processes raw sensor data through 

convolutional and LSTM layers trained jointly to learn hierarchical representations of the gearbox dynamics. Extensive 

experiments demonstrated the model's outstanding performance, achieving an impressive 97.9% accuracy in classifying whether 

a fault condition exists in the gearbox and a corresponding loss of 0.0059 after ten epochs of training. This high predictive 

accuracy allows wind farm operators to anticipate potential gearbox failures proactively, enabling timely maintenance and 

minimizing costly downtime. The proposed approach contributes to the efficiency and sustainability of wind energy operations. 

 

Keywords: Predictive Maintenance, Convolutional Neural Network, Long Short-Term Memory, Engine Failure, Industrial 
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1. Introduction   
 

A recent study has emphasized the growing importance of 

predictive maintenance in the context of Industry 4.0 

technologies [1]. The maintenance plan is predicated upon 

utilizing up-to-date asset condition data to inform and direct 

maintenance activities [2]. The emergence of Machine 

Learning (ML) and Deep Learning (DL) solutions has led to 

notable progress in predictive maintenance, particularly in the 

detection of anomalies in industries such as railways [3]. As 

demonstrated in the maintenance of industrial robots, the use 

of deterioration curves in predictive maintenance exemplifies 

the progression of this approach [4]. In addition, 

implementing Industrial Internet of Things (IIoT) 

technologies, such as the NGS-PlantOne System, has been 

crucial in cultivating a culture of efficient predictive 

maintenance for industrial machinery [5]. 

 

Attention has expanded to specific systems, such as pumping 

systems within the predictive maintenance domain. Scholarly 

investigations have explored this area's present utilization and 

achievements [6]. Furthermore, the utilization of predictive 

maintenance has extended to diverse sectors beyond the realm 

of manufacturing, including healthcare. In the healthcare 

industry, sophisticated predictive models have been devised 

specifically for cardiac monitoring [7]. Implementing Internet 

of Things (IoT) technologies has played a crucial role in 

enhancing factory operations, encompassing several aspects 

such as predictive maintenance and asset tracking [8]. In 

addition, using energy harvesting technologies within the 

Internet of Things (IoT) devices has effectively tackled 

maintenance and battery replacement issues in remote 

regions, augmenting these systems' operational effectiveness 

[9]. 
 

Machine learning has shown great potential in forecasting the 

remaining operational lifespan of crucial components such as 

aircraft engines, hence facilitating the implementation of 

proactive maintenance approaches [10]. Integrating Internet 

of Things (IoT) devices into many industries has bolstered 

automation and enabled the opportunity for remote 

monitoring and predictive maintenance of equipment [11]. 

Moreover, the emergence of intelligent technologies, such as 

smart wearables for monitoring heart health and infrared 

technologies for evaluating dairy products, highlights the 

wide range of uses and progress in predictive maintenance 

across many industries [7][12]. In general, the progression of 

predictive maintenance methods, combined with 

breakthroughs in technologies such as machine learning (ML) 

and the Internet of Things (IoT), consistently transforms 

maintenance procedures in various sectors, guaranteeing 

streamlined operations and economically viable maintenance 

protocols. 
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2. Related Work  
 

[13] propose a Machine Learning framework that employs the 

Random Forest methodology for Predictive Maintenance. The 

text provides a comprehensive account of the system's testing 

on a real-world industry case, encompassing the 

establishment of data gathering procedures, the execution of 

data analysis, and the application of Machine Learning 

methodologies. The data, obtained from various sources such 

as sensors, machine PLCs, and communication protocols, is 

processed through a Data Analysis Tool housed on Azure 

Cloud. Preliminary results suggest that the methodology 

exhibits precise forecasts of diverse machine conditions with 

an accuracy of 95%. The effectiveness of the proposed 

approach is further confirmed by comparisons using 

simulation tool analysis. 

 

[14] explores the utilization of machine learning 

methodologies to forecast the precision of operational 

manufacturing machinery. The approach employs supervised 

machine learning, notably the Binary Decision Tree technique 

utilizing the CART (Classification and Regression Trees) 

algorithm. Energy meters are connected to an RS232 to 

RS485 converter using the Modbus communication protocol 

to collect data. The study identifies the problem, examines 

energy meter data, retrieves data, and utilizes machine 

learning algorithms to forecast machine precision using 

energy meter readings. Furthermore, the study delineates the 

process of generating power reports for various machines and 

graphical alerts that suggest a decline in machine 

performance during specified time intervals. 

 

The deep learning framework for unsupervised anomaly 

detection in large-scale industrial data was proposed by [15]. 

The framework comprises a deep autoencoder neural network 

trained on standard data to rebuild the input data. Anomaly 

scores are computed by subtracting the reconstructed data 

from the input data. The accuracy achieved by the suggested 

framework on a dataset derived from a semiconductor 

manufacturing process was 92.1%. One potential restriction 

of the article pertains to the substantial training data and 

computational resources required by their approach, which 

may not be readily accessible in some industrial applications.  

The study by [16] extensively examines anomaly detection 

methodologies employed in industrial Internet of Things 

(IoT) applications. The researchers comprehensively examine 

diverse methodologies, encompassing statistical techniques, 

machine learning approaches, and deep learning 

methodologies. The report additionally examines the 

difficulties and constraints associated with each technique. 

This report is a survey that does not offer precise outcomes 

for each strategy that was examined. Nevertheless, this study 

offers significant perspectives on the difficulties and 

constraints associated with anomaly detection in industrial 

Internet of Things (IoT) applications.  

 

[17] conducted a comprehensive examination of anomaly 

detection methodologies for analyzing industrial time series 

data. The researchers examined diverse methodologies, 

encompassing statistical techniques, machine learning 

approaches, and deep learning methodologies. The report 

additionally examined the difficulties and constraints 

associated with each technique. This report is a survey that 

needs to offer precise outcomes for each strategy examined. 

Nevertheless, this study offers significant perspectives on the 

difficulties and constraints associated with detecting 

anomalies in time series data within the industrial context. 

  

[18] proposes a hybrid technique for anomaly detection in 

industrial systems. The methodology integrates conventional 

statistical techniques with machine learning algorithms, such 

as principal component analysis (PCA), independent 

component analysis (ICA), and support vector machines 

(SVMs). The suggested methodology attained a precision rate 

of 95% on a dataset derived from a manufacturing procedure. 

A drawback of this study is that the methodology may 

necessitate substantial parameter adjustment, which could 

pose difficulties in some industrial contexts.  

 

In their study, [19] present a novel methodology that utilizes 

machine learning techniques to detect anomalies in industrial 

control systems. This approach employs a feature selection 

strategy based on mutual information and a support vector 

machine (SVM) classifier. The proposed approach's accuracy 

was 98.6% when applied to a dataset obtained from a water 

treatment plant. The methodology may necessitate substantial 

training data, which may not be accessible in specific 

industrial contexts.  

 

A complete review of deep learning-based anomaly detection 

strategies for motor-related applications was conducted by 

[20]. The researchers conducted a comparative analysis of 

different deep learning models, such as autoencoder, LSTM, 

and CNN, to assess their effectiveness in detecting motor 

faults. Deep learning models demonstrated superior 

performance to conventional machine learning techniques, 

achieving accuracy rates ranging from 89% to 99%. 

Nevertheless, the primary constraint of these methodologies 

lies in the requirement for substantial quantities of annotated 

data, which may not be accessible in specific industrial 

environments.  

 

In their study, [21] comprehensively examined anomaly 

detection methodologies in industrial applications. The 

researchers assessed a range of methodologies, such as 

statistical techniques, machine learning, and deep learning, 

and examined their constraints and possible remedies. The 

findings demonstrated that deep learning-based approaches 

exhibited superior accuracy rates to conventional methods 

while necessitating more significant data and processing 

resources. The authors proposed a hybrid methodology 

integrating various methodologies to enhance precision and 

mitigate constraints.  

 

In their study, [22] introduced a hybrid methodology that 

combines LSTM networks and deep autoencoders to detect 

anomalies in industrial processes. The researchers evaluated 

their methodology using a real-world dataset about a hot-

rolling process, resulting in an accuracy rate of 99%. The 

primary constraint identified by the authors pertains to the 
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requirement of a substantial volume of data for the training of 

the deep autoencoder, a requirement that may not be readily 

accessible in specific industrial contexts.  

 

In their study, [23] introduced a randomized matrix 

decomposition method to discover anomalies in industrial 

systems. The researchers assessed their methodology using an 

actual dataset of a gas turbine engine and attained a precision 

rate of 96%. The authors observed that their methodology 

exhibited computational efficiency and the capability to 

process data with many dimensions. However, they 

acknowledged that selecting suitable hyperparameters 

necessitated a certain level of domain expertise.  

 

[24] introduced a framework based on deep learning for 

detecting anomalies in Industrial IoT. They assessed their 

methodology using an actual dataset of a steel production 

procedure and attained a precision rate of 97%. The authors 

observed that their methodology demonstrated the capability 

to process time-series data effectively and exhibited 

computational efficiency. However, a substantial quantity of 

annotated data was required to train the deep-learning model.  

In their study, [25] devised a machine learning methodology 

to detect anomalies within industrial systems. A mix of 

Principal Component Analysis (PCA) and Support Vector 

Machines (SVM) is employed to detect anomalies within the 

dataset. The approach employed by the authors is assessed 

using a dataset comprising data obtained from a chemical 

factory located in China. The authors conduct a comparative 

analysis of their methodology and other conventional 

anomaly detection approaches, such as k-nearest neighbor (k-

NN), and provide evidence that their approach exhibits 

superior accuracy compared to the traditional methods. The 

strategy employed by the authors yields an accuracy rate of 

98%, surpassing the performance of conventional methods by 

a wide margin. The integration of Principal Component 

Analysis (PCA) with Support Vector Machines (SVM) 

adeptly captures the inherent structure within the data and 

precisely detects anomalies.  

 

Using Long Short-Term Memory (LSTM) recurrent neural 

networks for anomaly identification in wind turbine data is 

suggested by [26]. The Long Short-Term Memory (LSTM) 

network is trained using time-series data, with each time step 

representing the turbine's state. The approach employed by 

the authors is assessed using a dataset comprising data 

obtained from a wind turbine located in Brazil. The authors 

compare their approach with other conventional anomaly 

detection techniques, such as principal component analysis 

(PCA), and provide evidence that their approach exhibits 

superior accuracy compared to the traditional methods. The 

strategy employed by the authors yields an accuracy rate of 

95%, surpassing the performance of conventional methods by 

a wide margin.  

 

In this study [27], proposed the Convolutional Gated 

Recurrent Unit (CGRU) model, which combines 

convolutional layers and Gated Recurrent Units (GRUs) for 

multi-sensor predictive maintenance of planetary gearboxes. 

The authors designed the CGRU to capture both spatial and 

temporal dependencies in the sensor data. The convolutional 

layers extract spatial features, while the GRU layers model 

the temporal dynamics. The CGRU model achieved an 

impressive 98.6% accuracy in detecting gearbox faults on a 

real-world dataset. 

 

This research [28] introduced a digital twin-driven approach 

for predictive maintenance in smart manufacturing. This 

approach integrates physics-based models, which simulate the 

behavior and degradation of industrial equipment, with data-

driven methods like deep learning. Specifically, they 

employed CNN and LSTM networks to learn from sensor 

data and predict equipment health and remaining useful life. 

By combining physics-based simulations with data-driven 

techniques, their framework demonstrated high accuracy in 

predicting bearing failures on a real-world dataset, 

showcasing the potential of hybrid approaches for predictive 

maintenance.  

 

[29] conducted a comprehensive review of machine learning 

and deep learning techniques for predictive maintenance in 

smart factories. They systematically analyzed various 

methods, including traditional statistical and machine 

learning approaches, as well as deep learning architectures 

like CNNs, LSTMs, and hybrid models like the Conv-LSTM. 

The review highlighted the strengths and limitations of each 

technique and provided insights into their applications in 

different industrial settings. The authors emphasized the 

promising performance of deep learning methods, particularly 

CNN-LSTM architectures, in capturing complex patterns in 

multivariate sensor data for predictive maintenance tasks. 

 

The paper [30] presented a technical review on data-driven 

predictive maintenance strategies for industrial equipment. 

They covered a wide range of machine learning and deep 

learning techniques, including CNN-LSTM models like the 

one proposed in your study. The review discussed the 

applications, challenges, and future research directions of 

these data-driven approaches in various industrial domains. 

The authors highlighted the importance of addressing issues 

such as data quality, model interpretability, and the 

integration of domain knowledge with data-driven models for 

more robust and reliable predictive maintenance solutions. 

 

3. Experimental Method 

 
The methodology used here is the CRISP-DM (Cross-

Industry Standard Process for Data Mining) methodology. 

CRISP-DM provides a structured, industry-proven, and 

domain-agnostic approach that is well-suited for complex 

data mining and machine learning projects like predictive 

maintenance. Its iterative nature helps refine and improve the 

predictive models based on feedback and evaluation results, 

which is crucial for developing robust and reliable predictive 

maintenance models. 
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Figure 1: Architecture of the Proposed System 

 

Dataset: The dataset provided is AI4I Predictive 

Maintenance dataset from Kaggle which contains real-world 

sensor data from a gearbox in a wind turbine system. It 

comprises 10,000 data points, each stored as rows with 14 

features in columns. Here is an explanation of each feature: 

1. UID: This is a unique identifier ranging from 1 to 10,000, 

assigned to each data point. 

2. productID consists of the letter 'L,' 'M,' or 'H,' representing 

low, medium, or high product quality variants, respectively, 

followed by a variant-specific serial number. 

3. Air temperature [K] was generated using a random walk 

process and later normalized to a standard deviation of 2 K 

around 300 K (Kelvin). 

4. Process temperature [K]: This is also generated using a 

random walk process, normalized to a standard deviation of 1 

K, and then added to the air temperature plus 10 K. 

5. Rotational speed [rpm]: Calculated from power of 2860 W, 

overlaid with normally distributed noise. 

6. Torque [Nm]: Torque values are typically distributed 

around 40 Nm with a standard deviation (σ) of 10 Nm, with 

no negative values. 

7. Tool wear [min]: The tool wear feature represents the 

amount of wear on the tool during the process. For quality 

variants, H/M/L adds 5/3/2 minutes of wear to the tool used. 

8. Machine failure: This binary label indicates whether the 

machine has failed at a particular data point. It is important to 

note that this is one of the two target variables and should not 

be used as a feature to prevent data leakage. 

9. Failure Type: This feature specifies the type of failure that 

has occurred, if any, in the particular data point. It is the 

second target variable and should not be used as a feature. 

 

Data Preprocessing: Data preprocessing was a crucial step 

in preparing the AI4I Predictive Maintenance dataset for 

effective modeling. The process began by thoroughly 

examining the data to identify and address any issues that 

could impact the model's performance. 

 

The first task was to handle the missing values in the dataset. 

Some instances were encountered with missing information 

for certain features. To address this, appropriate imputation 

techniques were employed, such as replacing the missing 

values with the feature's mean or median, depending on the 

data distribution. In cases where the missing data was deemed 

critical, the corresponding samples were removed from the 

dataset to maintain data integrity. 

Next, the focus shifted to addressing the outliers within the 

numerical features. Outliers, or data points that significantly 

deviate from most of the observations, can have a 

disproportionate influence on the model's learning process 

and lead to biased results. To mitigate this issue, techniques 

like winsorization or capping were utilized, where extreme 

values were replaced with a predetermined threshold. This 

approach ensured that the outliers did not skew the feature 

distributions and allowed the model to learn from the more 

representative data points. 

 

Additionally, the dataset was reviewed for any formatting 

inconsistencies or duplicate records. These issues were 

identified and resolved to maintain the integrity and reliability 

of the data. Formatting errors, such as inconsistent data types 

or unit conventions, were corrected to ensure seamless 

integration with the modeling pipeline. 

 

Finally, data normalization was performed to standardize the 

feature magnitudes and distributions. This step is crucial in 

machine learning, as it helps to ensure that features are on a 

similar scale, preventing certain features from dominating the 

optimization process. The Standard Scaler, a widely used 

normalization technique, was employed, which transformed 

the features to have a mean of 0 and a standard deviation of 1. 

This standardization improved the model's convergence and 

stability during the training phase. 

 

By meticulously addressing these data preprocessing 

challenges, the dataset was ensured to be clean, consistent, 

and well-suited for the subsequent feature selection and 

model training stages of the predictive maintenance analysis. 

Feature Selection: The AI4I Predictive Maintenance dataset 

from Kaggle contains real-world sensor data from a gearbox 

in a wind turbine system, represented as multivariate time-

series data. To extract meaningful features from this data 

using a CNN, the raw sensor readings are first preprocessed 

and organized into a 2D matrix format suitable for the CNN 

input. Each row of the matrix represents a time step, while 

each column corresponds to a different sensor channel. 

 

This input matrix is then fed into the convolutional layer of 

the CNN, where a set of learnable filters or kernels slide 

across the matrix, extracting local spatial patterns and 

features. These filters act as feature detectors, capturing 

localized patterns or dependencies within the sensor data 

across different channels. As the filters convolve over the 

input matrix, they produce feature maps representing the 

extracted local features. Each feature map corresponds to a 

specific filter and highlights the presence and strength of the 

associated feature pattern in the input data. 

 

A pooling layer (max pooling) was applied after the 

convolutional layer to downsample the feature maps while 

retaining the most salient features. Pooling helps reduce the 

spatial dimensions of the feature maps, making the model 

more robust to minor shifts or distortions in the input data. 

 

The CNN architecture consists of multiple stacked 

convolutional and pooling layers, allowing for the extraction 



International Journal of Computer Sciences and Engineering                                                                           Vol.12(4), Apr. 2024 

© 2024, IJCSE All Rights Reserved                                                                                                                                              5 

of increasingly complex and abstract features from the input 

data. Each subsequent convolutional layer operates on the 

feature maps generated by the previous layer, enabling the 

hierarchical learning of higher-level representations. 

 

After the convolutional and pooling layers, the feature maps 

are flattened into a 1D vector, which is the input to one or 

more fully connected layers. These fully connected layers 

combine the extracted features and perform further 

transformations, ultimately producing the desired output, such 

as classifying the presence or absence of faults in the wind 

turbine gearbox for predictive maintenance purposes. 

 

The CNN automatically learns to extract relevant spatial 

features from the multivariate sensor data by applying 

convolutional filters and pooling operations, capturing 

patterns and dependencies across different sensor channels. 

The layers of the LSTM network then utilize these learned 

features to perform the predictive maintenance task 

accurately. 

 

Model Training: The CNN-LSTM model is trained by fitting 

the built model to the training data using the fit() method. The 

input data and their matching labels are supplied as input. The 

output of the CNN is a flattened feature vector capturing the 

hierarchical spatial representations learned from the input 

data. This feature vector is then provided as input to the Long 

Short-Term Memory (LSTM) network, which processes it 

sequentially to model the temporal dependencies and patterns 

within the data. The LSTM network comprises multiple 

LSTM cells, each responsible for processing a single time 

step of the input sequence. As the LSTM processes the input 

sequence, it updates its internal state (memory cell and hidden 

state) based on the current input and the previous state, 

allowing it to remember or forget information from previous 

time steps selectively. The LSTM cell's hidden state is 

propagated from one-time step to the next, carrying 

information about the previous states and effectively enabling 

the LSTM to learn the temporal dynamics in the data. After 

processing the entire input sequence, the final hidden state or 

a combination of the hidden states from all time steps is input 

to a fully connected or classification layer. This layer maps 

the learned spatial-temporal features to the desired output, the 

fault classification: "Fault" or "No Fault." The LSTM 

network and the CNN are trained end-to-end using 

backpropagation and gradient descent optimization 

techniques to minimize the classification loss and learn the 

optimal weights and parameters for accurately predicting the 

fault condition based on the input sensor data from the wind 

turbine gearbox. During training, the model uses the 

optimization method (Adam) provided during compilation to 

iteratively alter its parameters to minimize the defined loss 

function (categorical cross-entropy). 

 

4. Results and Discussion 
 

4.1 Results 

The hybrid model integrates the Convolutional Neural 

Network (CNN) for feature extraction with the Long Short-

Term Memory (LSTM) to generate the final output. The 

experiment is conducted in three steps, utilizing a dataset of 

ten features and 10,000 cases for training purposes. An 

exploratory data analysis is conducted on two distinct datasets 

in the initial stage. In the second step, the CNN-LSTM model 

is trained, with the CNN extracting features that are then sent 

to the LSTM for the final output. 

 

4.1.1 Exploratory Data Analysis 

In this section, an Exploratory Data Analysis (EDA) was 

carried out to extract valuable insights from the DDoS dataset 

using visualizations. Exploratory Data Analysis (EDA) is an 

essential initial step that provides a comprehensive 

understanding of the data's properties and establishes the 

basis for future modeling efforts.  

 

Figure 2 shows the correlation matrix of numerical features. 

The correlation matrix shows the relationship between the 

numerical features of the dataset. 

 

Figure 3 highlights the distribution of classes within the 

dataset, notably emphasizing the count plot of different types 

of predictive maintenance. The visual depiction highlights a 

worrisome observation—the dataset demonstrates an uneven 

distribution of classes. A crucial measure is implemented to 

correct this disparity, as emphasized in Figure 4. This visual 

representation illustrates a count plot of the dataset after 

applying oversampling. Figure 5 shows the distribution of 

numerical features. Figure 6 shows a boxplot. The boxplot 

was used to identify outliers on the dataset. 

 

 
Figure 2: Correlation Matrix 

 

Figure 2 displays a correlation matrix that visualizes the 

relationships between the numerical features in the dataset. 

The matrix shows the pairwise correlation coefficients 

between each pair of numerical features, with the values 

ranging from -1 to 1. The diagonal elements represent the 

correlation of a feature with itself, which is always 1. The off-

diagonal elements indicate the strength and direction of the 

linear relationship between the corresponding features. 

Darker shades of blue represent stronger positive correlations, 

while darker shades of red represent stronger negative 
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correlations. This visualization can help identify highly 

correlated features, which may be redundant or provide 

insights into the underlying relationships within the data. 

 

 
Figure 3: Countplot of the Imbalanced Data 

 

Figure 3 presents a count plot that illustrates the class 

imbalance in the original dataset. The x-axis represents the 

two classes (fault and no fault), while the y-axis shows the 

count or frequency of instances belonging to each class. The 

bar heights reveal a significant imbalance, with the "no fault" 

class having a much higher count than the "fault" class. Class 

imbalance can pose challenges for machine learning models, 

as they may become biased towards the majority class and 

perform poorly on the minority class. 

 

 
Figure 4: Countplot of the balanced Data 

 

After addressing the class imbalance issue through 

oversampling techniques, figure 4 shows the count plot of the 

balanced dataset. In contrast to Figure 3, the bar heights for 

both classes are now equal, indicating that the number of 

instances in each class is balanced. This step is crucial to 

ensure that the model learns to classify both classes 

effectively during training. 

 
Figure 5: Distribution of numerical features 

 

Figure 5 presents a grid of plots, each displaying the 

distribution of a numerical feature in the dataset. The plots 

can take different forms, such as histograms or density plots, 

depending on the type of distribution. By visualizing the 

feature distributions, insights can be gained regarding the 

range, central tendency, and potential outliers or skewness 

present in the data. This information is valuable for data pre-

processing and feature engineering steps. 

 

 
Figure 6: Boxplots to identify outliers 

 

Figure 6 consists of boxplots, which are effective 

visualizations for identifying outliers in the dataset. Each 

boxplot represents a numerical feature, and the whiskers 

extending from the box indicate the range of non-outlier 

values. Data points beyond the whiskers are considered 

outliers and are plotted individually as dots. The boxplots 

provide a quick way to assess the presence and severity of 

outliers in each feature, which can be critical for data cleaning 

and pre-processing. 
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4.1.2 Implementation of the CNN-LSTM on Predictive 

Maintenance 

The CNN-LSTM model integrates Convolutional Neural 

Network (CNN) layers for extracting features with Long 

Short-Term Memory (LSTM) layers for modeling sequences. 

The present architectural design incorporates a Conv1D layer, 

including 64 filters and a kernel size of 3 to extract features 

from the input data. Subsequently, a MaxPooling1D layer is 

employed to downsample the extracted features. Following 

this, a Long Short-Term Memory (LSTM) layer consisting of 

50 units is employed for sequence learning. This layer 

incorporates dropout regularization, and the return_sequences 

parameter is set to True to preserve the sequence information. 

Further, the LSTM layer is incorporated with an identical 

design, followed by a Dense layer of 50 units, and the 

Rectified Linear Unit (ReLU) activation function is employed 

for subsequent feature processing. In order to classify the data 

into two groups, a Dense output layer is utilized, employing a 

softmax activation function. The Adam optimizer is utilized 

to construct the model, employing categorical cross-entropy 

loss and accuracy as the evaluation metrics. Figure 7 shows 

the summary of the model’s architecture. Table 1 shows the 

training process of the CNN-LSTM model. Figure 9 and 10 

shows the accuracy and loss values of the model. Figure 10 

shows the classification report of the CNN-LSTM model.  

 

 
Figure 7: The Summary of the CNN-LSTM Model 

 

Figure 7 displays a summary of the Conv-LSTM model 

architecture, including the layer types, output shapes, and the 

number of trainable parameters in each layer. It provides an 

overview of the model's structure, allowing for a better 

understanding of the flow of information and the 

dimensionality of the data at different stages of the network. 

 

 
Figure 8: Extracted features from the CNN model. 

Figure 8 shows a visualization or representation of the 

features extracted by the Convolutional Neural Network 

(CNN) component of the Conv-LSTM model. The CNN 

learns to extract spatial features from the multivariate sensor 

data by applying convolutional filters and pooling operations. 

This figure likely depicts the output feature maps or 

activations of the CNN, which capture patterns and 

dependencies across different sensor channels. 

 
Table 1: Training Result of the CNN-LSTM 

Epoch 

2534/2534 

Loss Accuracy Validation 

loss 

Validation 

Accuracy 

Time 

per 

step 

1/10 0.0961 0.9628 0.0457 0.9829 23s 
6ms 

2/10 0.0398 0.9851 0.0303 0.9892 15s 

6ms 
3/10 0.0282 0.9894 0.0308 0.9879 16s 

6ms 

4/10 0.0207 0.9920 0.0138 0.9950 17s 
7ms 

5/10 0.0178 0.9928 0.0137 0.9947 15s 

6ms 
6/10 0.0139 0.9945 0.0233 0.9904 13s 

5ms 

7/10 0.0124 0.9953 0.0100 0.9960 14s 
6ms 

8/10 0.0105 0.9962 0.0099 0.9968 13s 

5ms 
9/10 0.0096 0.9963 0.0160 0.9930 13s 

5ms 
10/10 0.0089 0.9968 0.0059 0.9979 15s 

6ms 

      

 

Table 1 summarizes the training results of the Conv-LSTM 

model for each epoch. It consists of rows, with each row 

representing an epoch, and columns displaying various 

performance metrics. The columns typically include the 

epoch number, training loss, training accuracy, validation 

loss, and validation accuracy. By examining this table, you 

can track the model's progress during training, observe how 

the loss and accuracy values change over epochs, and identify 

the epoch at which the model achieved the best performance 

on the validation set. 

 

 
Figure 9: Accuracy for both training and validation 
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Figure 9 presents line plots that illustrate the model's 

accuracy during the training and validation phases over the 

course of the training epochs. The x-axis represents the epoch 

number, while the y-axis shows the accuracy values ranging 

from 0 to 1. The plot typically includes two lines, one for 

training accuracy and another for validation accuracy. By 

analyzing the curves, you can observe the model's 

convergence behavior, potential overfitting issues (if the 

validation accuracy starts decreasing while training accuracy 

keeps increasing), and the final achieved accuracy on both the 

training and validation sets. 

 

 
Figure 10: Model Loss for both training and validation 

 

Similar to Figure 9, figure 10 displays line plots of the 

model's loss function during training and validation over the 

training epochs. The x-axis represents the epoch number, and 

the y-axis shows the loss values. The loss function quantifies 

the difference between the model's predictions and the true 

labels, and the goal is to minimize this value during training. 

The plot includes two lines, one for training loss and another 

for validation loss. By examining these curves, you can assess 

the model's convergence, potential overfitting issues, and the 

final achieved loss on both the training and validation sets. 

 

 
Figure 11: Classification Report 

 

Figure 11 presents a classification report, which is a tabular 

summary of the model's performance metrics for the multi-

class classification task. The report typically includes metrics 

such as precision, recall, f1-score, and support (the number of 

instances) for each class. Additionally, it provides an overall 

accuracy score, which is the ratio of correctly classified 

instances to the total number of instances. The classification 

report provides a comprehensive evaluation of the model's 

ability to classify instances into the two different classes of 

Fault or No Fault.  

 

4.2 Discussion 

The results obtained from the hybrid Conv-LSTM model for 

predictive maintenance of wind turbine gearboxes are 

promising. Figure 9 and Figure 10 depict the model's 

accuracy and loss curves during training and validation, 

respectively. These curves demonstrate the model's 

convergence and stability, with a clear separation between the 

training and validation curves, indicating no significant 

overfitting. 

 

The Classification Report in Figure 11 provides a 

comprehensive evaluation of the model's performance. The 

overall accuracy of 97.9% indicates the model's exceptional 

ability to correctly classify fault and no-fault conditions in the 

wind turbine gearbox. The high precision and recall values 

for both classes further reinforce the model's reliability and 

robustness. 

 

Table 1 presents the training results for each epoch, 

showcasing the model's convergence and performance 

improvement over time. The loss values consistently 

decrease, reaching a low of 0.0059 on the validation set after 

10 epochs. Simultaneously, the accuracy values steadily 

increase, reaching 99.79% on the validation set by the final 

epoch. These results highlight the model's efficacy in learning 

the intricate patterns and features necessary for accurate fault 

prediction from the multivariate sensor data. 

 

The Exploratory Data Analysis (EDA) played a crucial role in 

understanding the dataset's characteristics and preparing it for 

modeling. Figure 2 revealed the relationships between 

numerical features, providing insights for feature selection or 

engineering. The initial class imbalance issue, evident in 

Figure 3, was addressed through oversampling techniques, 

resulting in a balanced dataset as shown in Figure 4. This step 

was crucial to prevent the model from being biased towards 

the majority class and ensuring fair representation of both 

fault and no-fault instances during training. 

 

Figure 5 and Figure 6 helped identify outliers and understand 

the distribution of features. While most features exhibited a 

relatively normal distribution, the presence of outliers in the 

rotational speed and torque features necessitated appropriate 

handling, such as clipping or removal, to prevent these 

extreme values from adversely affecting the model's training. 

The CNN component of the Conv-LSTM model effectively 

extracted spatial features from the multivariate sensor data by 

applying convolutional filters and pooling operations, as 

depicted in Figure 8. These learned features captured patterns 

and dependencies across different sensor channels, providing 

a rich representation of the gearbox's dynamics. 

 

The LSTM component of the model utilized these extracted 

spatial features to model the temporal dependencies and 
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patterns within the data. By processing the input sequence 

through multiple LSTM cells, the model learned to 

selectively retain or forget information from previous time 

steps, enabling accurate prediction of fault conditions based 

on the historical sensor readings. 

 

Overall, the results demonstrate the effectiveness of the 

proposed hybrid Conv-LSTM approach in leveraging the 

strengths of both CNNs and LSTMs for predictive 

maintenance tasks involving multivariate time-series data. 

The model's high accuracy and low loss values highlight its 

potential for real-world deployment in wind energy 

operations, enabling proactive maintenance strategies and 

reducing unplanned downtime. 

 

5. Comparative Study 
 

This study proposed a hybrid deep learning approach that 

combines Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, known as the Conv-

LSTM model, for predictive maintenance of industrial 

machinery. Specifically, the model was applied to the task of 

fault detection in wind turbine gearboxes using the AI4I 

Predictive Maintenance dataset from Kaggle. The 

performance of the proposed Conv-LSTM model was 

compared with various other deep learning and traditional 

machine learning methods reported in recent literature.  

 
Table 2: Comparative Results of Deep Learning Methods for Predictive 

Maintenance of Industrial Machinery 

Study 

 

Method Data Accuracy 

Proposed 

Study 

Convolutional 

LSTM (Conv-

LSTM) 

Wind Turbine 

Gearbox 
97.9% 

Zhang et 

al. [27] 

Convolutional 

Gated Recurrent 

Units (CGRU) 

Planetary Gearbox 98.6% 

Jiang et al. 

[28] 

Digital Twin + 

Deep Learning 

(CNN, LSTM) 

Bearing Failures 

High (no 

specific 

value) 

Soualhi et 

al. [29] 

Review of 

ML/DL for 

Predictive 

Maintenance 

Various - 

Wang et al. 

[30] 

Review of Data-

driven Predictive 

Maintenance 

Various - 

Yuan et al. 

[25] 

Principal 

Component 

Analysis (PCA) 

+ Support Vector 

Machines (SVM) 

Chemical Factory 98% 

Bianchi & 

de Paula 

[26] 

Long Short-Term 

Memory 

(LSTM) 

Wind Turbine 95% 

Zhang et 

al. [15] 

Deep 

Autoencoder 

Semiconductor 

Manufacturing 
92.1% 

Safdari et 

al. [22] 

LSTM + Deep 

Autoencoder 

Hot-Rolling 

Process 
99% 

 

As shown in Table 2, the Conv-LSTM model achieved an 

impressive accuracy of 97.9% in classifying fault conditions 

in the wind turbine gearbox dataset. This result is highly 

competitive and on par with, or even superior to, several 

state-of-the-art deep learning approaches for predictive 

maintenance tasks. 

 

One of the most closely related studies is the work by Zhang 

et al. [27], which proposed a Convolutional Gated Recurrent 

Unit (CGRU) model for predictive maintenance of planetary 

gearboxes using multi-sensor data. Their CGRU model, 

which shares similarities with the Conv-LSTM architecture, 

achieved an accuracy of 98.6% on a real-world planetary 

gearbox dataset. While the CGRU model demonstrates 

slightly higher accuracy, the performance of the proposed 

Conv-LSTM model on the wind turbine gearbox dataset is 

comparable and highlights its effectiveness in a different 

industrial context. 

 

Another relevant study by Jiang et al. [28] explored a digital 

twin-driven approach that integrates physics-based models 

and data-driven methods, including deep learning techniques 

like LSTMs and CNNs, for predictive maintenance in smart 

manufacturing. Although they did not report a specific 

accuracy value, their framework achieved high accuracy in 

predicting bearing failures on a real-world dataset. This study 

underscores the potential of combining physics-based models 

with data-driven approaches like the Conv-LSTM model to 

further enhance predictive maintenance capabilities. 

 

Compared to traditional machine learning techniques, the 

proposed Conv-LSTM model outperformed the approach by 

Yuan et al. [25], which employed Principal Component 

Analysis (PCA) and Support Vector Machines (SVMs) for 

anomaly detection in a chemical factory dataset, achieving an 

accuracy of 98%. The deep learning-based Conv-LSTM 

model's ability to automatically learn relevant features from 

raw sensor data without extensive feature engineering 

contributes to its superior performance. 

 

Additionally, the Conv-LSTM model demonstrated a 

significant improvement over the standalone LSTM network 

proposed by Bianchi and de Paula [26] for anomaly detection 

in wind turbine data, which achieved an accuracy of 95%. 

The integration of convolutional layers for spatial feature 

extraction in the Conv-LSTM architecture enhances its 

representational power and leads to improved performance in 

capturing the complex patterns present in multivariate sensor 

data. 

 

While the deep autoencoder approach by Zhang et al. [15] 

showed promising results with an accuracy of 92.1% on a 

semiconductor manufacturing process dataset, the proposed 

Conv-LSTM model outperformed it by a considerable 

margin. This suggests that the Conv-LSTM architecture, 

tailored for multivariate time-series data, is better suited for 

predictive maintenance tasks in industrial machinery settings. 

It is worth noting that the hybrid approach by Safdari et al. 

[22], combining LSTM networks and deep autoencoders, 

achieved an impressive accuracy of 99% on a hot-rolling 

process dataset. While their method performed exceptionally 

well on that specific application, the proposed Conv-LSTM 
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model demonstrated comparable performance (97.9% 

accuracy) on the more challenging wind turbine gearbox 

dataset, which may exhibit different dynamics and patterns. 

 

The review papers [29] and [30] did not report specific 

accuracy values but provided valuable insights into the 

various machine learning and deep learning techniques 

employed for predictive maintenance in smart factories and 

industrial settings. These studies highlight the potential and 

advantages of deep learning approaches, particularly CNN-

LSTM architectures, aligning with the findings and 

contributions of the proposed Conv-LSTM model. 

 

Overall, the comparative analysis reveals that the proposed 

Conv-LSTM model is highly competitive and on par with, or 

superior to, several state-of-the-art deep learning methods for 

predictive maintenance of industrial machinery. Its 

performance on the challenging wind turbine gearbox dataset 

demonstrates its effectiveness in capturing spatial and 

temporal dependencies in multivariate sensor data, enabling 

accurate fault detection and proactive maintenance strategies. 

While there is still room for improvement and the exploration 

of hybrid approaches combining physics-based models and 

data-driven techniques, the Conv-LSTM model contributes 

significantly to the growing body of knowledge in this field 

and offers a tailored solution for predictive maintenance tasks 

in industrial settings. 

 

6. Conclusion and Future Scope  
 

This research proposed a novel hybrid deep learning approach 

combining Convolutional Neural Networks and Long Short-

Term Memory networks for predictive maintenance of 

industrial machinery, with a focus on fault detection in wind 

turbine gearboxes. The Conv-LSTM architecture effectively 

captured both spatial and temporal patterns in the multivariate 

sensor data from the wind turbine gearbox. The model was 

extensively evaluated using the AI4I Predictive Maintenance 

dataset from Kaggle, demonstrating outstanding performance 

in identifying fault conditions within the gearbox. 

 

The model achieved an impressive 97.9% accuracy in fault 

classification after 10 epochs of training, as shown in Figure 

11 and Table 1. The corresponding loss value was as low as 

0.0059, indicating the model's ability to learn highly 

discriminative features from the sensor data. Figure 9 and 

Figure 10 depict the model's accuracy and loss curves during 

training and validation, respectively, illustrating its 

convergence and stability. 

 

The Exploratory Data Analysis played a crucial role in 

understanding the dataset's characteristics and preparing it for 

modeling. Figure 2 revealed the relationships between 

numerical features, providing insights for feature selection. 

The initial class imbalance issue, evident in Figure 3, was 

addressed through oversampling techniques, resulting in a 

balanced dataset as shown in Figure 4. Figure 5 and Figure 6 

helped identify outliers and understand the distribution of 

features. 

The high predictive accuracy achieved by the Conv-LSTM 

model enables wind farm operators to anticipate potential 

gearbox failures proactively, allowing for timely maintenance 

scheduling and minimizing costly unplanned downtime. By 

reducing operational expenses and maximizing turbine 

availability, the proposed approach contributes to the overall 

efficiency and sustainability of wind energy operations. 

 

While this research focused on the wind energy domain, the 

Conv-LSTM model's architecture and training methodology 

can be adapted to other industrial sectors with slight 

modifications. 

  

Future research directions include exploring transfer learning 

techniques to leverage the knowledge gained from wind 

turbine gearbox data for accelerated model training on other 

machinery types. Additionally, integrating domain knowledge 

and physics-based models with the data-driven Conv-LSTM 

approach could further improve prediction accuracy and 

provide deeper insights into fault mechanisms. 
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