
 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        1 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                           Volume-5, Issue-9                                           E-ISSN: 2347-2693 

                 

Sentiment Analysis Based on a Deep Stochastic Network and Active Learning 

 
Tulsi Jain

1*
, Kushagra Agarwal

2
, Ronil Pancholia

3
 

 
1*

Dept. of CSE, Indian Institute of Technology (IIT), Delhi, India 
2
Dept. of CSE, Indian Institute of Technology (IIT), Delhi, India 

3
Dept. of CSE, Birla Institute of Technology and Science, Pilani, India 

*Corresponding Author:   jaintulsi43@gmail.com  

Available online at: www.ijcseonline.org  

Received: 22/Aug/2017, Revised: 08/Sep/2017, Accepted: 19/Sep/2017, Published: 30/Sep/2017 

Abstract— this paper proposes a novel approach for sentiment analysis. The growing importance of sentiment analysis 

commensurate with the use of social media such as reviews, forum discussions, blogs, micro blogs like Twitter, and other 

social networks. We require efficient and higher accuracy algorithms in sentiment polarity classification as well as sentiment 

strength detection. In comparison to pure vocabulary based system, deep learning algorithms show significantly higher 

performance. The goal of this research is to modify a Recurrent Neural Network (RNN) with Gated Recurrent Unit (GRU) by 

introducing stochastic depth in a hidden layer and comparing it with baseline Naïve Bayes, vanilla RNN and GRU-RNN 

models. To improve our results, we also incorporated Active Learning with Uncertainty Sampling approach. Movie review 

dataset from Rotten Tomatoes was used, the dataset includes 215,154 fine grained labelled phrases in addition to 11,855 full 

sentences. We performed pre-processing on the data and used an embedding matrix with pre-trained word vectors as features 

for training our model. These word vectors were generated using character level n-grams with fasttext on Wikipedia data. 
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I.  INTRODUCTION  

Sentiment analysis arrives from the field of study that deals 

with analysing emotions, attitude, and sentiments attached 

with the text. The computational analysis of opinion, 

sentiment, and subjectivity is an active area of research in 

recent time, because of its wide range of applications.  

 

Traditional approaches for sentiment analysis have focused 

on calculating sentiment at the document level. However, 

accurate evaluation of sentiment for complex documents 

containing a mixture of positives and negatives movie 

reviews require sentence-level or even phrase-level sentiment 

analysis. 

 

We believe that the lack of suitable labelled data that could 

be used in machine learning techniques to train sentiment 

classifiers is one of the major reasons the field of sentiment 

analysis is not advancing more rapidly. As we will compare 

the results of various machine learning models and 

recommend the best performing model. We observed that 

few predictions were corresponding to a low probability 

distribution. So, we also applied active learning on top of it 

to further improve the accuracy of the individual model. 

 

This paper is organised in the following manner. Section I 

starts with the need for sentiment analysis and introduction 

of traditional approaches for sentiment analysis like Naïve 

Bayes, Section II contains the related work on sentiment 

analysis and describes our baseline approaches. Proceeding 

ahead, Section III provides details to the baseline approaches 

and continues developing methodology of revised versions of 

Recurrent Neural Network by introducing Stochastic Depth 

in GRU. Section IV describes the Experiments performed 

and discusses results achieved by the proposed model. 

Finally, Section V concludes research work with future 

directions. 

 

II. RELATED WORK  

Bag of words models is the first fundamental approach to 

sentiment analysis. As the name suggests, in these type of 

model problem is addressed by assuming that a bunch of 

non-dependent words formed a complex sentence, assumed 

independence of word ordering and context[5]. Although 

limitation of above-mentioned assumptions can be overcome 

up to a certain extent, especially when numerous superlatives 

are present, can do not consider very basic interactions 

because they do not encode any structure of the consecutive 

word because of the robust assumption of normal 

distribution. Another big limitation of Naïve Bayes[5] is the 

assumption of word independence, which is not true. For 

example, if the word ‘good' is encountered in a review, it 

expresses a strong positive sentiment. However, if that word 

is preceded by ‘not', as in ‘not good', then it likely expresses 

a negative sentiment. To solve this problem, many took the 
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alternative of trying to create hand engineered features, 

however as we know language is complicated, heuristically 

designed rules become too complex and highly dependent on 

the dataset. Hence, the chances of overfitting increase.  In the 

past, many researchers worked to find a robust solution to 

create techniques for designing features. One of the most 

prominent ideas is developing word vectors - mapping the 

text of words to a high dimensional embedded vector space. 

A primary motivation for such a transformation is that, in 

nonlinear learning techniques like neural networks, 

convolutional neural networks etc. a word vector 

representation helps in providing a semantically better 

context. 

 

Deep learning with neural networks is extremely powerful. 

However, applying them is not straightforward. Some of the 

issues we face when dealing with deep neural networks are: 

1) elongated training times 2) vanishing gradient problems 

and 3) overfitting of training data. The idea introduced by 

Huang [2] of training an ensemble of models with stochastic 

depth is explored in this paper. Using this technique, we can 

train shorted models while at prediction use the deep model. 

Thus, ensuring we don’t lose on accuracy but also have 

reduced training time [3]. The epitome of this idea is that for 

a given network, for each layer of our network  , the 

Bernoulli random variable is                   , where    

is the survival probability. If     , then the activation 

function of layer   comes out to be equal to the identity 

function and we directly feed forward the hidden state from 

the previous input layer as our output hidden state. So, in the 

previous model the output of hidden layer   can be expressed 

as: 

       (               )     

 

Training a model with stochastic depth, the hidden state now 

has an element of randomness depending on the Bernoulli 

variable. It then becomes: 

 

       (                 )     

 

which becomes identity function of     when      and the 

original network when     . This technique is described in 

the original paper by Huang, as convolution neural networks 

in the application of image classification. The biggest 

advantage of this technique is that it's simple at the surface 

and hence doesn't comes across issues which are possible in 

potentially deep networks. Effectively in this approach, the 

network is shortened to reduce the risk of vanishing 

gradients. For a given input, which in this case is a sequence 

of M different word vectors, there are 2M different possible 

networks. Out of these 2M networks, one sample is used and 

updated. This architecture training is effectively an ensemble 

training of different models. Training with stochastic depth 

adds its own element of regularization along with L2 penalty 

on your model weights helps improve the model’s ability to 

generalize well in an out of sample context. 

 

Image and audio data are already represented in the form of 

numbers but while working with text data, we need to 

convert it into a numerical format, to be able to run our deep 

learning model. One simple approach is to use separate 

vectors for each of the words, but this does not address even 

the very basic problems. Firstly, we will have high 

dimensional vectors with all ‘zeroes’ and exactly one ‘one’ 

corresponding to the word’s position. This type of vector 

creation is also known as one-hot encoding. Secondly, this 

simple approach does not take the natural notion of similarity 

into consideration. By using word embedding, the above-

mentioned problem can be addressed up to a great extent. 

Syntactic and semantic word similarities play a very 

important role in a majority of NLP tasks. It is quite possible 

that the same word may represent different meanings 

depending on its surrounding words (which is known as 

context). In layman terms, let's take a word 'bark'. One of the 

meanings of this word is a tree's outer layer and another 

meaning is the sound a dog makes. If in a sentence, bark 

occurs with neighbouring words as dog, bite, hurt, etc. we 

can understand it's the latter meaning. Contrarily, if 

neighbouring words are tree, wood, etc. the reference is for 

former. We will exploit this concept to deal with polysemy 

and synonyms and make our model learn. 

 

Word embeddings are a continuous vector representation of 

words in n-dimensional space which basically is an efficient 

learning of word representations. These embedding can be 

generated using fasttext [6], which trains character level n-

grams of a huge dataset in a shallow neural network. These 

vectors help us find words which are syntactically and 

semantically similar. For our experiments, we are using pre-

trained 300-dimensional vectors generated from Wikipedia 

data using skip-gram model described in Bojanowski et al. 

(2016) [1]. 

 

III. METHODOLOGY 

Baseline Approach: Naïve Bayes 

Naïve Bayes[5] was used as a baseline classifier. In Naïve 

Bayes classification takes advantage of the assumption of 

conditional independence among attributes. This assumption 

of conditional independence is not always true. This can be 

clearly seen in examples where a negative keyword placed 

before a word makes a big difference in the sentiment for 

that sentence. Another issue  with  Naïve  Bayes  comes  

when  you have no occurrences of a particular class label 

with a particular attribute value together. 
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Figure 1.  In the above figure, we are describing difference between a recurrent neural network and its variant by adding stochastic depth. Identity function is 

used in second recurrent cell hence as it passes directly into the next layer without modification. 

This causes the probability estimates for this attribute to be 

zero, affecting the posterior probability. 

 

Being a very basic model only dependent on bag of words, 

this classifier still achieves good results, hence is used as 

baseline metric. We are primarily concerned with estimating 

the class for sentence s,          
         

    . Here,      

denotes the class of sentence and   
   

 represents the words in 

the sentence. Using Bayes rules, the conditional probability 

is estimated as 
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Generally, the order of the search space is too huge and the 

conditional independence assumption reduces it drastically. 

But conditional independence isn’t always a correct 

assumption. 

Recurrent Neural Network 

A recurrent neural network[7] architecture is a class of 

artificial neural network where connections between units 

form a directed cycle. This allows it to exhibit dynamic 

temporal behaviour. Unlike feedforward neural networks, 

RNNs can use their internal memory to process arbitrary 

sequences of inputs. A standard recurrent neural network for 

each step   , takes as input not just the current input 

   example but also the example perceived in the previous 

step     to create a hidden state based upon and both    and 

  . Generally, the composition function is passed through 

some non-linear transformation like hyperbolic  tangent,  

sigmoid  and  ReLU leading to an affine transformation. 

Each time step in terms of an input state and a hidden state 

can be defined as 

    (   
         )     

 

with f  being the activation function. The parameters for the 

model are h, W and b. Here, the hidden layer used is affine 

transformation which then passes through an activation 

function to calculate the probability distribution    
  of the     

label. Each sentence is converted into a sequence to 

normalise the sentence before passing into the model, after 

which a single vector is generated as output. Thus, the 

output,   
  is stated as 

  
                      

 

where M is the length of the sentence sequence.  Figure 1 

describes the network used in the model. On applying the 

softmax function, labels with highest probability were 

obtained for that sequence. Although, this structure becomes 

problematic when longer term word relationships are 

encountered and also managing vanishing gradients is a 

concern. At every time step in GRU (Gated Recurrent Unit), 

an update gate and a reset gate are added, that helps in 

controlling the information flow within a sequence without 

using a memory unit. The update gate    is added as 

 

    (                   )     

 

The reset gate is added as 

 

    (                   )     
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With the combination of these gates, the hidden cell state, 

 ̃  can be computed as 

 

 ̃      (                 )     

 

where   is the Hadamard product which is the entry-wise 

product of two matrices. This hidden state information is 

encoded. The state information that gets transferred to the 

subsequent cell in the network, is qualified by the update 

gate. This state is computed as  

 

                      ̃      

 

Although a new cell is defined in the network, the 

information flow from one cell to another is unchanged. 

 

Adding to this we introduce stochastic dominance to the 

model. While training, every node is weighed with a random 

Bernoulli variable                   , where    is the 

probability of survival for that layer. As proposed by Huang 

[2],  we add this Bernoulli variable to nodes of individual 

hidden layers. The layer stays unchanged where the value of 

   is one. However, when    is zero, hidden state of the 

precursor node is passed forward. The output    for GRU 

with this added Bernoulli variable can be computed as 

 

                         ̃                       

 

As shown in figure 1, for each node random variable is 

drawn in the second network. We drop out the second node 

in the network to feed forward the hidden state of the second 

node. This in effect transforms the training sentence from 

“Players were found guilty” to “Players found guilty”. This 

greatly reduces the network size which further means 

reduced training time. Although during prediction, the 

complete input is fed into the network, each input is amended 

based on the survival probability at the time of training. 
 

Thus, the hidden state output   
     during prediction for the 

vanilla recurrent network is 

 

  
                             

 

For the GRU network 

 

 ̃ 
                                     

 

IV.   EXPERIMENTS AND RESULTS 

Throughout the experimentation, Stanford Sentiment 

Treebank Rotten Tomatoes data set is used. All of the 

techniques have been implemented with python library, 

Tensorflow by Google along with a combination of scikit-

learn and pandas libraries. The code was executed on GPU 

Amazon GPU web server. Dataset used was in the form of 

binary classification (with positive and negative class), as 

opposed to the fine-grained analysis. 

 

 
Figure 2. This figure compares the running time performance of the 

implementations of RNN. RNN + GRU model outperformed other models 

by reducing running time by 20%. 

Dataset is analysed and a few historical models are 

implemented, stochastic depth model is added onto a 

Recurrent Neural Network while implementing the model for 

this project. The first primary motive to build the stochastic 

depth model to analyse running time of the model once with 

stochastic depth and to check whether it can be improved and 

the second motive was to check if there is a better model in 

terms of accuracy of test data that can be generated which 

also performs well with variations in training data. Firstly, 

we put focus on running time of the model. This objective is 

easy to achieve. Stochastic depth RNN takes less time than 

the baseline model. Survival probability is the main factor to 

deice the range of the speedup. Figure 2 shows a chart 

depicting the running time of multiple models, where 

stochastic depth added to the GRU model reducing the 

running time. 

 

Survival probability was set to 50% in this case. While run 

time is taken down to 50% when survival probability is 

reduced to 25%. A reasonable training set accuracy was 

achieved (∼80%), but it was slightly difficult to achieve the 

model to make any noticeable progress in order to show, 

acceptable generalization error on the development set. Keen 

observations yielded some interesting results. When survival 

probability got too low, the performance dropped off. Yet 

reasonable values were added to the performance in a 

specific range of probabilities, where the model was able to 

perform much better than the Naïve Bayes model. As shown 

in figure 3, model performance against the survival 

probability. 

 

An unforeseen phenomenon was noticed, model training 

often converged much slowly than  rest  other  baselines.  
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Even  after many iterations, dev set loss could be seen going 

down on the 

 

 
Figure 3. This figure compares survival probability performance of 

RNN+GRU and SD-RNN+GRU. Noticeably, our model outperformed 
Naïve Bayes model, because of lack of stochastic depth for small-scale 

probabilities in the same. 

contrary for the same iteration on the non-stochastic model 

loss  on  the  development  set  was  steadily  increasing.  The 

reason for this could be the stochastic nature of the model 

and 

that search space is huge in the ensemble models, and each 

pass through the data can be very different. Running for 

more iterations almost counteracts any gains that were 

achieved by saving time due to smaller networks. 

 

Sentence Level Binary Classification 

Classifier Train 

Accuracy 

Test Accuracy 

Naïve Bayes 74.1 % 72.9 % 

RNN - Vanilla 80.1 % 73.1 % 

RNN - GRU 79.4 % 75.9 % 

RNN – GRU + SD 81.3 % 76.8 % 
 

Table 1. The above table expresses the results of baselines and proposed 

model. 

On comparison, the performance of the Naive Bayes model 

was reasonably well. Naive Bayes model can even detect 

negation to a small extent, which was a bit amazing. e.g., in 

the sentence “He was not happy”, was correctly identified in 

negative class, when intuitively this could be identified in 

positive class in bag of words model because of the presence 

of the word “happy” (happy is positive). Nonetheless, it 

looks positivity of the word “happy” has been overcome by 

the at least slightly negativity and negativity enough of the 

word “not”, hence it rightly labels the sentence as negative 

sentence. However, there were multiple observations where 

ensemble model performed better than the baseline Naive 

Bayes model to identify negation properly. For example, the 

phrase “Not a bad system at all”, Here we can clearly see the 

presence of negative sentiment word in “bad”, but notably, it 

is followed by the word “not”. In the above example 

ensemble model is able to identify correctly as positive 

sentiment, but baseline Naive Bayes model incorrectly 

identified it as negative sentiment. Similarly, “disappointing 

but not really sad”, has the word “sad” which contains a 

negative sentiment as a standalone word. Here, the negation 

makes it a positive sentence, which this model can capture 

and forecast. 

 

If it is permitted to select the data from which it learns 

machine learning algorithms accuracy can be enhanced even 

with lesser training labels. An active learner may create 

queries, usually in the form of unlabelled data instances to be 

labelled by an oracle (e.g., a human annotator)
 
[8]. We 

required phrase level sentiment tagging for our dataset. This 

tagging is very cumbersome and expensive, so an active 

learning approach is suitable. 

 

 
Figure 4. Here, classification accuracy is expressed as function of the 

number of documents queried for two selection strategies: Uncertainty 
sampling and Random sampling. 

To generate queries for oracle to label, we use Uncertainty 

Sampling technique by Lewis and Gale, 1994[4]. Since our 

model is one of probabilistic learning, we find the data points 

which produce results with the lowest posterior probabilities. 

To do this, we query the instances for whom are model least 

confident: 

 

   
                ̂         
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where  ̂                 , is the class label with the 

highest posterior probability for the model  . We made 100 

such queries on our final RNN – GRU + SD model which 

lead to an increase an accuracy of about 4.08%. 

 

V.   CONCLUSION 

We compared various models for sentiment analysis and 

propose Stochastic Gated Recurrent Unit (SD + GRU) based 

on active learning as it performs significantly better than 

Naive Bayes, vanilla gated recurrent unit. We have applied 

uncertainty sampling querying approach which is clearly 

superior to random sampling as seen in figure 4. Since we are 

using recursive models, we can do a lot of hyper-parameter 

tuning to get better results. Sentiment analysis has many 

applications in public opinion, customer satisfaction, market 

value etc. This work can be extended towards expression of 

emotions as huge amount of data from social media channels 

and review platform can be obtained. This would also be 

helpful to avoid overfitting and accuracy would further 

increase. 
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