

 © 2017, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-9 E-ISSN: 2347-2693

Sentiment Analysis Based on a Deep Stochastic Network and Active Learning

Tulsi Jain

1*
, Kushagra Agarwal

2
, Ronil Pancholia

3

1*

Dept. of CSE, Indian Institute of Technology (IIT), Delhi, India
2
Dept. of CSE, Indian Institute of Technology (IIT), Delhi, India

3
Dept. of CSE, Birla Institute of Technology and Science, Pilani, India

*Corresponding Author: jaintulsi43@gmail.com

Available online at: www.ijcseonline.org

Received: 22/Aug/2017, Revised: 08/Sep/2017, Accepted: 19/Sep/2017, Published: 30/Sep/2017

Abstract— this paper proposes a novel approach for sentiment analysis. The growing importance of sentiment analysis

commensurate with the use of social media such as reviews, forum discussions, blogs, micro blogs like Twitter, and other

social networks. We require efficient and higher accuracy algorithms in sentiment polarity classification as well as sentiment

strength detection. In comparison to pure vocabulary based system, deep learning algorithms show significantly higher

performance. The goal of this research is to modify a Recurrent Neural Network (RNN) with Gated Recurrent Unit (GRU) by

introducing stochastic depth in a hidden layer and comparing it with baseline Naïve Bayes, vanilla RNN and GRU-RNN

models. To improve our results, we also incorporated Active Learning with Uncertainty Sampling approach. Movie review

dataset from Rotten Tomatoes was used, the dataset includes 215,154 fine grained labelled phrases in addition to 11,855 full

sentences. We performed pre-processing on the data and used an embedding matrix with pre-trained word vectors as features

for training our model. These word vectors were generated using character level n-grams with fasttext on Wikipedia data.

Keywords— Fasttext, Recurrent Neural Network, Gated Recurrent Unit, Active Learning

I. INTRODUCTION

Sentiment analysis arrives from the field of study that deals

with analysing emotions, attitude, and sentiments attached

with the text. The computational analysis of opinion,

sentiment, and subjectivity is an active area of research in

recent time, because of its wide range of applications.

Traditional approaches for sentiment analysis have focused

on calculating sentiment at the document level. However,

accurate evaluation of sentiment for complex documents

containing a mixture of positives and negatives movie

reviews require sentence-level or even phrase-level sentiment

analysis.

We believe that the lack of suitable labelled data that could

be used in machine learning techniques to train sentiment

classifiers is one of the major reasons the field of sentiment

analysis is not advancing more rapidly. As we will compare

the results of various machine learning models and

recommend the best performing model. We observed that

few predictions were corresponding to a low probability

distribution. So, we also applied active learning on top of it

to further improve the accuracy of the individual model.

This paper is organised in the following manner. Section I

starts with the need for sentiment analysis and introduction

of traditional approaches for sentiment analysis like Naïve

Bayes, Section II contains the related work on sentiment

analysis and describes our baseline approaches. Proceeding

ahead, Section III provides details to the baseline approaches

and continues developing methodology of revised versions of

Recurrent Neural Network by introducing Stochastic Depth

in GRU. Section IV describes the Experiments performed

and discusses results achieved by the proposed model.

Finally, Section V concludes research work with future

directions.

II. RELATED WORK

Bag of words models is the first fundamental approach to

sentiment analysis. As the name suggests, in these type of

model problem is addressed by assuming that a bunch of

non-dependent words formed a complex sentence, assumed

independence of word ordering and context[5]. Although

limitation of above-mentioned assumptions can be overcome

up to a certain extent, especially when numerous superlatives

are present, can do not consider very basic interactions

because they do not encode any structure of the consecutive

word because of the robust assumption of normal

distribution. Another big limitation of Naïve Bayes[5] is the

assumption of word independence, which is not true. For

example, if the word ‘good' is encountered in a review, it

expresses a strong positive sentiment. However, if that word

is preceded by ‘not', as in ‘not good', then it likely expresses

a negative sentiment. To solve this problem, many took the

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 2

alternative of trying to create hand engineered features,

however as we know language is complicated, heuristically

designed rules become too complex and highly dependent on

the dataset. Hence, the chances of overfitting increase. In the

past, many researchers worked to find a robust solution to

create techniques for designing features. One of the most

prominent ideas is developing word vectors - mapping the

text of words to a high dimensional embedded vector space.

A primary motivation for such a transformation is that, in

nonlinear learning techniques like neural networks,

convolutional neural networks etc. a word vector

representation helps in providing a semantically better

context.

Deep learning with neural networks is extremely powerful.

However, applying them is not straightforward. Some of the

issues we face when dealing with deep neural networks are:

1) elongated training times 2) vanishing gradient problems

and 3) overfitting of training data. The idea introduced by

Huang [2] of training an ensemble of models with stochastic

depth is explored in this paper. Using this technique, we can

train shorted models while at prediction use the deep model.

Thus, ensuring we don’t lose on accuracy but also have

reduced training time [3]. The epitome of this idea is that for

a given network, for each layer of our network , the

Bernoulli random variable is , where

is the survival probability. If , then the activation

function of layer comes out to be equal to the identity

function and we directly feed forward the hidden state from

the previous input layer as our output hidden state. So, in the

previous model the output of hidden layer can be expressed

as:

 ()

Training a model with stochastic depth, the hidden state now

has an element of randomness depending on the Bernoulli

variable. It then becomes:

 ()

which becomes identity function of when and the

original network when . This technique is described in

the original paper by Huang, as convolution neural networks

in the application of image classification. The biggest

advantage of this technique is that it's simple at the surface

and hence doesn't comes across issues which are possible in

potentially deep networks. Effectively in this approach, the

network is shortened to reduce the risk of vanishing

gradients. For a given input, which in this case is a sequence

of M different word vectors, there are 2M different possible

networks. Out of these 2M networks, one sample is used and

updated. This architecture training is effectively an ensemble

training of different models. Training with stochastic depth

adds its own element of regularization along with L2 penalty

on your model weights helps improve the model’s ability to

generalize well in an out of sample context.

Image and audio data are already represented in the form of

numbers but while working with text data, we need to

convert it into a numerical format, to be able to run our deep

learning model. One simple approach is to use separate

vectors for each of the words, but this does not address even

the very basic problems. Firstly, we will have high

dimensional vectors with all ‘zeroes’ and exactly one ‘one’

corresponding to the word’s position. This type of vector

creation is also known as one-hot encoding. Secondly, this

simple approach does not take the natural notion of similarity

into consideration. By using word embedding, the above-

mentioned problem can be addressed up to a great extent.

Syntactic and semantic word similarities play a very

important role in a majority of NLP tasks. It is quite possible

that the same word may represent different meanings

depending on its surrounding words (which is known as

context). In layman terms, let's take a word 'bark'. One of the

meanings of this word is a tree's outer layer and another

meaning is the sound a dog makes. If in a sentence, bark

occurs with neighbouring words as dog, bite, hurt, etc. we

can understand it's the latter meaning. Contrarily, if

neighbouring words are tree, wood, etc. the reference is for

former. We will exploit this concept to deal with polysemy

and synonyms and make our model learn.

Word embeddings are a continuous vector representation of

words in n-dimensional space which basically is an efficient

learning of word representations. These embedding can be

generated using fasttext [6], which trains character level n-

grams of a huge dataset in a shallow neural network. These

vectors help us find words which are syntactically and

semantically similar. For our experiments, we are using pre-

trained 300-dimensional vectors generated from Wikipedia

data using skip-gram model described in Bojanowski et al.

(2016) [1].

III. METHODOLOGY

Baseline Approach: Naïve Bayes

Naïve Bayes[5] was used as a baseline classifier. In Naïve

Bayes classification takes advantage of the assumption of

conditional independence among attributes. This assumption

of conditional independence is not always true. This can be

clearly seen in examples where a negative keyword placed

before a word makes a big difference in the sentiment for

that sentence. Another issue with Naïve Bayes comes

when you have no occurrences of a particular class label

with a particular attribute value together.

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 3

Figure 1. In the above figure, we are describing difference between a recurrent neural network and its variant by adding stochastic depth. Identity function is

used in second recurrent cell hence as it passes directly into the next layer without modification.

This causes the probability estimates for this attribute to be

zero, affecting the posterior probability.

Being a very basic model only dependent on bag of words,

this classifier still achieves good results, hence is used as

baseline metric. We are primarily concerned with estimating

the class for sentence s,

 . Here,

denotes the class of sentence and

 represents the words in

the sentence. Using Bayes rules, the conditional probability

is estimated as

 (|

)
 (

|

 (

)

 ∏ (

|

 (

)

Generally, the order of the search space is too huge and the

conditional independence assumption reduces it drastically.

But conditional independence isn’t always a correct

assumption.

Recurrent Neural Network

A recurrent neural network[7] architecture is a class of

artificial neural network where connections between units

form a directed cycle. This allows it to exhibit dynamic

temporal behaviour. Unlike feedforward neural networks,

RNNs can use their internal memory to process arbitrary

sequences of inputs. A standard recurrent neural network for

each step , takes as input not just the current input

 example but also the example perceived in the previous

step to create a hidden state based upon and both and

 . Generally, the composition function is passed through

some non-linear transformation like hyperbolic tangent,

sigmoid and ReLU leading to an affine transformation.

Each time step in terms of an input state and a hidden state

can be defined as

 (
)

with f being the activation function. The parameters for the

model are h, W and b. Here, the hidden layer used is affine

transformation which then passes through an activation

function to calculate the probability distribution
 of the

label. Each sentence is converted into a sequence to

normalise the sentence before passing into the model, after

which a single vector is generated as output. Thus, the

output,
 is stated as

where M is the length of the sentence sequence. Figure 1

describes the network used in the model. On applying the

softmax function, labels with highest probability were

obtained for that sequence. Although, this structure becomes

problematic when longer term word relationships are

encountered and also managing vanishing gradients is a

concern. At every time step in GRU (Gated Recurrent Unit),

an update gate and a reset gate are added, that helps in

controlling the information flow within a sequence without

using a memory unit. The update gate is added as

 ()

The reset gate is added as

 ()

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 4

With the combination of these gates, the hidden cell state,

 ̃ can be computed as

 ̃ ()

where is the Hadamard product which is the entry-wise

product of two matrices. This hidden state information is

encoded. The state information that gets transferred to the

subsequent cell in the network, is qualified by the update

gate. This state is computed as

 ̃

Although a new cell is defined in the network, the

information flow from one cell to another is unchanged.

Adding to this we introduce stochastic dominance to the

model. While training, every node is weighed with a random

Bernoulli variable , where is the

probability of survival for that layer. As proposed by Huang

[2], we add this Bernoulli variable to nodes of individual

hidden layers. The layer stays unchanged where the value of

 is one. However, when is zero, hidden state of the

precursor node is passed forward. The output for GRU

with this added Bernoulli variable can be computed as

 ̃

As shown in figure 1, for each node random variable is

drawn in the second network. We drop out the second node

in the network to feed forward the hidden state of the second

node. This in effect transforms the training sentence from

“Players were found guilty” to “Players found guilty”. This

greatly reduces the network size which further means

reduced training time. Although during prediction, the

complete input is fed into the network, each input is amended

based on the survival probability at the time of training.

Thus, the hidden state output
 during prediction for the

vanilla recurrent network is

For the GRU network

 ̃

IV. EXPERIMENTS AND RESULTS

Throughout the experimentation, Stanford Sentiment

Treebank Rotten Tomatoes data set is used. All of the

techniques have been implemented with python library,

Tensorflow by Google along with a combination of scikit-

learn and pandas libraries. The code was executed on GPU

Amazon GPU web server. Dataset used was in the form of

binary classification (with positive and negative class), as

opposed to the fine-grained analysis.

Figure 2. This figure compares the running time performance of the

implementations of RNN. RNN + GRU model outperformed other models

by reducing running time by 20%.

Dataset is analysed and a few historical models are

implemented, stochastic depth model is added onto a

Recurrent Neural Network while implementing the model for

this project. The first primary motive to build the stochastic

depth model to analyse running time of the model once with

stochastic depth and to check whether it can be improved and

the second motive was to check if there is a better model in

terms of accuracy of test data that can be generated which

also performs well with variations in training data. Firstly,

we put focus on running time of the model. This objective is

easy to achieve. Stochastic depth RNN takes less time than

the baseline model. Survival probability is the main factor to

deice the range of the speedup. Figure 2 shows a chart

depicting the running time of multiple models, where

stochastic depth added to the GRU model reducing the

running time.

Survival probability was set to 50% in this case. While run

time is taken down to 50% when survival probability is

reduced to 25%. A reasonable training set accuracy was

achieved (∼80%), but it was slightly difficult to achieve the

model to make any noticeable progress in order to show,

acceptable generalization error on the development set. Keen

observations yielded some interesting results. When survival

probability got too low, the performance dropped off. Yet

reasonable values were added to the performance in a

specific range of probabilities, where the model was able to

perform much better than the Naïve Bayes model. As shown

in figure 3, model performance against the survival

probability.

An unforeseen phenomenon was noticed, model training

often converged much slowly than rest other baselines.

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 5

Even after many iterations, dev set loss could be seen going

down on the

Figure 3. This figure compares survival probability performance of

RNN+GRU and SD-RNN+GRU. Noticeably, our model outperformed
Naïve Bayes model, because of lack of stochastic depth for small-scale

probabilities in the same.

contrary for the same iteration on the non-stochastic model

loss on the development set was steadily increasing. The

reason for this could be the stochastic nature of the model

and

that search space is huge in the ensemble models, and each

pass through the data can be very different. Running for

more iterations almost counteracts any gains that were

achieved by saving time due to smaller networks.

Sentence Level Binary Classification

Classifier Train

Accuracy

Test Accuracy

Naïve Bayes 74.1 % 72.9 %

RNN - Vanilla 80.1 % 73.1 %

RNN - GRU 79.4 % 75.9 %

RNN – GRU + SD 81.3 % 76.8 %

Table 1. The above table expresses the results of baselines and proposed

model.

On comparison, the performance of the Naive Bayes model

was reasonably well. Naive Bayes model can even detect

negation to a small extent, which was a bit amazing. e.g., in

the sentence “He was not happy”, was correctly identified in

negative class, when intuitively this could be identified in

positive class in bag of words model because of the presence

of the word “happy” (happy is positive). Nonetheless, it

looks positivity of the word “happy” has been overcome by

the at least slightly negativity and negativity enough of the

word “not”, hence it rightly labels the sentence as negative

sentence. However, there were multiple observations where

ensemble model performed better than the baseline Naive

Bayes model to identify negation properly. For example, the

phrase “Not a bad system at all”, Here we can clearly see the

presence of negative sentiment word in “bad”, but notably, it

is followed by the word “not”. In the above example

ensemble model is able to identify correctly as positive

sentiment, but baseline Naive Bayes model incorrectly

identified it as negative sentiment. Similarly, “disappointing

but not really sad”, has the word “sad” which contains a

negative sentiment as a standalone word. Here, the negation

makes it a positive sentence, which this model can capture

and forecast.

If it is permitted to select the data from which it learns

machine learning algorithms accuracy can be enhanced even

with lesser training labels. An active learner may create

queries, usually in the form of unlabelled data instances to be

labelled by an oracle (e.g., a human annotator)

[8]. We

required phrase level sentiment tagging for our dataset. This

tagging is very cumbersome and expensive, so an active

learning approach is suitable.

Figure 4. Here, classification accuracy is expressed as function of the

number of documents queried for two selection strategies: Uncertainty
sampling and Random sampling.

To generate queries for oracle to label, we use Uncertainty

Sampling technique by Lewis and Gale, 1994[4]. Since our

model is one of probabilistic learning, we find the data points

which produce results with the lowest posterior probabilities.

To do this, we query the instances for whom are model least

confident:

 ̂

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 6

where ̂ , is the class label with the

highest posterior probability for the model . We made 100

such queries on our final RNN – GRU + SD model which

lead to an increase an accuracy of about 4.08%.

V. CONCLUSION

We compared various models for sentiment analysis and

propose Stochastic Gated Recurrent Unit (SD + GRU) based

on active learning as it performs significantly better than

Naive Bayes, vanilla gated recurrent unit. We have applied

uncertainty sampling querying approach which is clearly

superior to random sampling as seen in figure 4. Since we are

using recursive models, we can do a lot of hyper-parameter

tuning to get better results. Sentiment analysis has many

applications in public opinion, customer satisfaction, market

value etc. This work can be extended towards expression of

emotions as huge amount of data from social media channels

and review platform can be obtained. This would also be

helpful to avoid overfitting and accuracy would further

increase.

VI. REFERENCES

[1] Bojanowski, Piotr, et al, “Enriching word vectors with subword

information”, arXiv preprint arXiv:1607.04606 (2016).

[2] Huang, Gao, et al, “Deep networks with stochastic

depth”, European Conference on Computer Vision. Springer

International Publishing, 2016.

[3] Socher, Richard, et al, “Recursive deep models for semantic

compositionality over a sentiment treebank”, Proceedings of the

2013 conference on empirical methods in natural language

processing. 2013.

[4] Lewis, David D., and William A. Gale, “A sequential algorithm for

training text classifiers”, Proceedings of the 17th annual

international ACM SIGIR conference on Research and development

in information retrieval. Springer-Verlag New York, Inc., 1994.

[5] McCallum, Andrew, and Kamal Nigam, “A comparison of event

models for naive bayes text classification”, AAAI-98 workshop on

learning for text categorization. Vol. 752. 1998.

[6] Mikolov, Tomas, et al, “Efficient estimation of word representations

in vector space”, arXiv preprint arXiv, pp.1301.3781 (2013).

[7] Mikolov, Tomas, et al, “Recurrent neural network based language

model”, Interspeech. Vol. 2. 2010.

[8] Settles, Burr, “Active learning literature survey”, University of

Wisconsin, Madison, Vol.52, pp.55-66, 2010.

Authors Profile

Mr. Tulsi Jain received his Bachelor of Technology degree from

Indian Institute of Technology Delhi in the year 2015. After

graduation, he joined Oracle Corporation as an application

developer. At present, he is pursuing research in the field of

Artificial Intelligence, Natural Language Processing and Computer
Vision.

Mr. Kushagra Agarwal pursued Integrated Master of Technology

from Indian Institute of Technology Delhi from 2011-2016. He is

currently pursuing research in the field of Applied Machine
Learning, Natural Language Processing and Computer Vision.

Mr. Ronil Pancholia pursued Master of Science (Technology) from

Birla Institute of Technology and Science Pilani from 2012-2016.

He is currently working in the field of Applied Machine Learning,

specifically Natural Language Processing and Computer Vision.

